Mass and surface changes of activated carbon treated with nitric acid. Thermal behavior of the samples

1997 ◽  
Vol 291 (1-2) ◽  
pp. 109-115 ◽  
Author(s):  
V. Gómez-Serrano ◽  
M. Acedo-Ramos ◽  
A.J. López-Peinado ◽  
C. Valenzuela- Calahorro
2014 ◽  
Vol 8 (4) ◽  
pp. 391-398 ◽  
Author(s):  
Yan Han ◽  
Ping-Ping Zhao ◽  
Xiao-Ting Dong ◽  
Cui Zhang ◽  
Shuang-Xi Liu

2004 ◽  
Vol 33 (4) ◽  
pp. 418-419 ◽  
Author(s):  
Akane Miyazaki ◽  
Kazumasa Shibazaki ◽  
Yoshio Nakano ◽  
Mitsuteru Ogawa ◽  
Ioan Balint

2012 ◽  
Vol 518-523 ◽  
pp. 2099-2103
Author(s):  
Guang Zhou Qu ◽  
Hai Bing Ji ◽  
Ran Xiao ◽  
Dong Li Liang

The activated carbon fiber (ACF) was treated by different concentration nitric acid (HNO3) and hydrogen peroxide (H2O2) oxidization to enhance its adsorption capacity to hexavalent chromium (Cr6+) ion. The adsorption amount and adsorption kinetics of Cr6+ion on ACFs, and the surface chemical groups were investigated. The results showed that the modified ACFs with 1% HNO3and 10% H2O2had a better adsorption capacity, respectively. The adsorption amount of ACFs was affected strongly solution pH value, and decreased significantly with increasing of the pH value. The adsorption kinetics indicated that the adsorption rates of Cr6+ ion on different modified ACFs were well fitted with the pseudo-second-order kinetic model. After 1% HNO3and 10% H2O2modification, respectively, the total acidic oxygen-containing groups on ACFs surface had an increase obviously, which might be enhance the adsorption amount of Cr6+ion on ACFs.


2014 ◽  
Vol 526 ◽  
pp. 40-45 ◽  
Author(s):  
Xiao Pin Wang ◽  
Yi Hui Li ◽  
Cou Hua Zhu

This paper studied the changes in the surface morphology and microcrystalline structure of GAC modified using the original activated carbon, HNO3, FeCl2·4H20, KMnO4. The micro pore structure on the surface is damaged after being treated by HNO3, and the transition pores increase; after being treated by FeCl2·4H20 and KMnO4,the carbon surface is irregular, and there is a protuberance, which is due to the irregular loading of manganese ions on the activated carbon surface. Then the roughness of the activated carbon increases and the size of graphite crystallite of GAC is also greatly reduced, showing obvious trend of fine grains. Meanwhile, the studies of the effect of removing the trichlorophenol from water after modification indicate that the results basically match. On this basis, the modified model is put forward.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2498 ◽  
Author(s):  
Marwa Elkady ◽  
Hassan Shokry ◽  
Hesham Hamad

Nano-activated carbon (NAC) prepared from El-Maghara mine coal were modified with nitric acid solution. Their physico-chemical properties were investigated in terms of methylene blue (MB) adsorption, FTIR, and metal adsorption. Upon oxidation of the ACS with nitric acid, surface oxide groups were observed in the FTIR spectra by absorption peaks at 1750–1250 cm−1. The optimum processes parameters include HNO3/AC ratio (wt./wt.) of 20, oxidation time of 2 h, and the concentration of HNO3 of 10% reaching the maximum adsorption capacity of MB dye. Also, the prepared NAC was characterized by SEM, EDX, TEM, Raman Spectroscopy, and BET analyses. The batch adsorption of MB dye from solution was used for monitoring the behavior of the most proper produced NAC. Equilibrium isotherms of MB dye adsorption on NAC materials were acquired and the results discussed in relation to their surface chemistry. Langmuir model recorded the best interpretation of the dye adsorption data. Also, NAC was evaluated for simultaneous adsorption of six different metal ions (Fe2+, Ni2+, Mn2+, Pb2+, Cu2+, and Zn2+) that represented contaminates in petrochemical industrial wastewater. The results indicated that the extracted NAC from El-Maghara mine coal is considered as an efficient low-cost adsorbent material for remediation in both basic dyes and metal ions from the polluted solutions.


Sign in / Sign up

Export Citation Format

Share Document