Barrier properties of TiN/TiSi2 bilayers formed by two-step rapid thermal conversion process for Cu diffusion barrier

1999 ◽  
Vol 347 (1-2) ◽  
pp. 214-219 ◽  
Author(s):  
Youn Tae Kim ◽  
Chi-Hoon Jun ◽  
Dae Yong Kim
2013 ◽  
Vol 110 ◽  
pp. 29-34 ◽  
Author(s):  
Henry Wojcik ◽  
Christoph Hossbach ◽  
Christoph Kubasch ◽  
Patrick Verdonck ◽  
Yohan Barbarin ◽  
...  

2003 ◽  
Vol 766 ◽  
Author(s):  
Kyoung-Il Na ◽  
Se-Jong Park ◽  
Woo-Cheol Jeong ◽  
Se-Hoon Kim ◽  
Sung-Eun Boo ◽  
...  

AbstractFor a diffusion barrier against Cu, tantalum nitride (TaN) films have been successfully deposited by both conventional thermal atomic layer deposition (ALD) and plasma assisted atomic layer deposition (PAALD), using pentakis (ethylmethlyamino) tantalum (PEMAT) and ammonia (NH3) as precursors. The growth rate of PAALD TaN at substrate temperature 250° was slightly higher than that of ALD TaN (0.80 Å/cycle for PAALD and 0.75 Å/cycle for ALD). Density of TaN films deposited by PAALD was as high as 11.0 g/cm3, considerably higher compared to the value of 8.3 g/cm3 obtained by ALD. The N: Ta ratio for ALD TaN was 44: 37 in composition and the film contained approximately 8∼10 atomic % carbon and 11 atomic % oxygen impurities. On the other hand, the ratio for PAALD TaN layers was 47: 44 and the respective carbon and oxygen contents of TaN layers decreased to 3 atomic % and 4 atomic %. The stability of 10 nm-thick TaN films as a Cu diffusion barrier was tested through thermal annealing for 30 minutes in N2 ambient and characterized by XRD, which proves the PAALD deposited TaN film to maintain better barrier properties against Cu below 800°.


2021 ◽  
Author(s):  
Kirill B. Larionov ◽  
Albert Zh. Kaltaev ◽  
Vladimir E. Gubin ◽  
Andrey V. Zenkov

2009 ◽  
Vol 1156 ◽  
Author(s):  
Koji Neishi ◽  
Vijay Kumar Dixit ◽  
S. Aki ◽  
Junichi Koike ◽  
K. Matsumoto ◽  
...  

AbstractA thin-amorphous MnOx layer using self-forming barrier process with a Cu-Mn alloy shows good adhesion and diffusion barrier properties between copper and dielectric layer, resulting in excellent reliability for stress and electromigration. Meanwhile, chemical vapor deposition (CVD) can be employed for conformal deposition of the barrier layer in narrow trenches and vias for future technology node. In our previous research, a thin and uniform amorphous MnOx layer could be formed on TEOS-oxide by thermal metal-organic CVD (MOCVD), showing a good diffusion barrier property. In addition, a good adhesion strength is necessary between a Cu line and a dielectric layer not only to ensure good SM and EM resistance but also to prevent film delamination under mechanical or thermal stress conditions during fabrication process such as chemical mechanical polishing or high temperature annealing. To date, no information is available with regard to the adhesion property of CVD-MnOx. In this work, we report diffusion barrier property in further detail and adhesion property in PVD-Cu/CVD-MnOx/SiO2/Si. The temperature dependence of the adhesion property is correlated with the chemical composition and valence state of Mn investigated with SIMS and Raman spectroscopy.Substrates were p-type Si wafers having a plasma-TEOS oxide of 100nm in thickness. CVD was carried out in a deposition chamber. A manganese precursor was vaporized and introduced into the deposition chamber with H2 carrier gas. After the CVD, a Cu overlayer was deposited on some samples using a sputtering system in load lock chamber of the CVD machine. The diffusion barrier property of the MnOx film was investigated in annealed samples at 400 oC for 100 hours in a vacuum of better than 1.0×10-5 Pa. The Adhesion property of Mn oxide was investigated by Scotch tape test in the as-deposited and in the annealed Cu/CVD-MnOx/TEOS samples. The obtained samples were analyzed for thickness and microstructure with TEM, chemical bonding states of the MnOx layer with XPS, and composition of each layer with SIMS.In the CVD deposition below 300 °C, no Cu delamination was observed both in the as-deposited and in the annealed Cu/CVD-MnOx/SiO2 samples. On the other hand, in the CVD deposition at 400 °C, the Cu films were delaminated from the CVD-MnOx/TEOS substrates. The XPS peak position of Mn 2p and Mn 3s spectra indicated that the valence state of Mn in the as-deposited barrier layer below 400 °C was 2+. Composition analysis with SIMS as well as Raman also indicated the presence of a larger amount of carbon at 400 °C than at less than 300 °C. The good adhesion between Cu and MnO could be attributed to an amount of carbon inclusion in the CVD barrier layer.


RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38159-38168 ◽  
Author(s):  
Xia Zhang ◽  
Bo Bai ◽  
Honglun Wang ◽  
Yourui Suo

Novel SB@α-Fe2O3 composite catalysts were fabricated through a simple thermal conversion process from SB@β-FeOOH precursor, which maintained good adsorption capacity after five successive adsorption/heterogeneous Fenton-like regeneration cycles.


2013 ◽  
Vol 113 (5) ◽  
pp. 054506 ◽  
Author(s):  
P. Blösch ◽  
F. Pianezzi ◽  
A. Chirilă ◽  
P. Rossbach ◽  
S. Nishiwaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document