Targeting of AID‐Mediated Sequence Diversification by cis‐Acting Determinants

Author(s):  
Shu Yuan Yang ◽  
David G. Schatz
Keyword(s):  
2021 ◽  
Vol 22 (9) ◽  
pp. 4634
Author(s):  
Wenxuan Du ◽  
Junfeng Yang ◽  
Lin Ma ◽  
Qian Su ◽  
Yongzhen Pang

The calcineurin B-like protein (CBL) and CBL-interacting protein kinase (CIPK) play important roles in plant signal transduction and response to abiotic stress. Plants of Medicago genus contain many important forages, and their growth is often affected by a variety of abiotic stresses. However, studies on the CBL and CIPK family member and their function are rare in Medicago. In this study, a total of 23 CBL and 58 CIPK genes were identified from the genome of Medicago sativa as an important forage crop, and Medicaog truncatula as the model plant. Phylogenetic analysis suggested that these CBL and CIPK genes could be classified into five and seven groups, respectively. Moreover, these genes/proteins showed diverse exon-intron organizations, architectures of conserved protein motifs. Many stress-related cis-acting elements were found in their promoter region. In addition, transcriptional analyses showed that these CBL and CIPK genes exhibited distinct expression patterns in various tissues, and in response to drought, salt, and abscisic acid treatments. In particular, the expression levels of MtCIPK2 (MsCIPK3), MtCIPK17 (MsCIPK11), and MtCIPK18 (MsCIPK12) were significantly increased under PEG, NaCl, and ABA treatments. Collectively, our study suggested that CBL and CIPK genes play crucial roles in response to various abiotic stresses in Medicago.


1991 ◽  
Vol 266 (34) ◽  
pp. 22796-22799
Author(s):  
G.J. Hannon ◽  
A. Chubb ◽  
P.A. Maroney ◽  
G. Hannon ◽  
S. Altman ◽  
...  

1989 ◽  
Vol 264 (32) ◽  
pp. 19009-19016
Author(s):  
S C Williams ◽  
S G Grant ◽  
K Reue ◽  
B Carrasquillo ◽  
A J Lusis ◽  
...  
Keyword(s):  

Author(s):  
Qingchun Zhao ◽  
Zhenzhen Luo ◽  
Jiadong Chen ◽  
Hongfang Jia ◽  
Penghui Ai ◽  
...  

AbstractPhosphorus (P) deficiency is one of the major nutrient stresses restricting plant growth. The uptake of P by plants from soil is mainly mediated by the phosphate (Pi) transporters belonging to the PHT1 family. Multiple PHT1 genes from diverse plant species have been shown to be strongly up-regulated upon Pi starvation, however, the underlying mechanisms for the Pi-starvation-induced (PSI) up-regulation have not been well deciphered for most Pi transporter genes. Here, we reported a detailed dissection of the promoter activity of a PSI rice Pi transporter gene OsPT6, using the β-glucuronidase (GUS) reporter gene. OsPT6 promoter could drive GUS expression strongly in both roots and blades of rice plants grown under low P, but not high P. Cis-acting element analysis identified one copy of the P1BS motif and two copies of the W-box motif in OsPT6 promoter. Targeted deletion of the P1BS motif caused almost complete abolition of GUS induction in response to Pi starvation, irrespective of the presence or absence of the W-box motif, Four repeats of the P1BS motif fused to the CaMV35S minimal promoter was sufficient to induce GUS expression responsive to Pi starvation. Targeted deletion of the upstream W-box motif (W1) did not affect the GUS expression activity compared with the full-length OsPT6 promoter, while targeted deletion of the downstream W-box motif (W2) or both of the W-box motifs remarkably reduced the GUS induction rate upon Pi starvation. Our results proposed that the PSI response of OsPT6 was positively regulated by at least two elements, the sole P1BS and the downstream W-box, in its promoter, and the W-box-mediated up-regulation of OsPT6 might be highly dependent on the P1BS motif.


Sign in / Sign up

Export Citation Format

Share Document