Chapter 15 Studies on peptide comodulator transmission. New perspective on the treatment of disorders of the central nervous system

Author(s):  
K. Fuxe ◽  
L.F. Agnati ◽  
A. Härfstrand ◽  
K. Andersson ◽  
F. Mascagni ◽  
...  
2019 ◽  
Author(s):  
Ken Takiyama ◽  
Hikaru Yokoyama ◽  
Naotsugu Kaneko ◽  
Kimitaka Nakazawa

AbstractHow the central nervous system (CNS) controls many joints and muscles is a fundamental question in motor neuroscience and related research areas. An attractive hypothesis is the module hypothesis: the CNS controls groups of joints or muscles (i.e., spatial modules) while providing time-varying motor commands (i.e., temporal modules) to the spatial modules rather than controlling each joint or muscle separately. Another fundamental question is how the CNS generates numerous repertories of movement patterns. One hypothesis is that the CNS modulates the spatial and/or temporal modules depending on the required tasks. It is thus essential to quantify the spatial module, the temporal module, and the task-dependent modulation of those modules. Although previous methods attempted to quantify these aspects, they considered the modulation in only the spatial or temporal module. These limitations were possibly due to the constraints inherent to conventional methods for quantifying the spatial and temporal modules. Here, we demonstrate the effectiveness of tensor decomposition in quantifying the spatial module, the temporal module, and the task-dependent modulation of these modules without such limitations. We further demonstrate that the tensor decomposition provides a new perspective on the task-dependent modulation of spatiotemporal modules: in switching from walking to running, the CNS modulates the peak timing in the temporal module while recruiting proximal muscles in the corresponding spatial module.Author summaryThere are at least two fundamental questions in motor neuroscience and related research areas: 1) how does the central nervous system (CNS) control many joints and muscles and 2) how does the CNS generate numerous repertories of movement patterns. One possible answer to question 1) is that the CNS controls groups of joints or muscles (i.e., spatial modules) while providing time-varying motor commands (i.e., temporal modules) to the spatial modules rather than controlling each joint or muscle separately. One possible answer to question 2) is that the CNS modulates the spatial and/or temporal module depending on the required tasks. It is thus essential to quantify the spatial module, the temporal module, and the task-dependent modulation of those modules. Here, we demonstrate the effectiveness of tensor decomposition in quantifying the modules and those task-dependent modulations while overcoming the shortcomings inherent to previous methods. We further show that the tensor decomposition provides a new perspective on how the CNS switches between walking and running. The CNS modulated the peak timing in the temporal module while recruiting proximal muscles in the corresponding spatial module.


2020 ◽  
Vol 18 (11) ◽  
pp. 1054-1063 ◽  
Author(s):  
Vladimir N. Nikolenko ◽  
Marine V. Oganesyan ◽  
Angela D. Vovkogon ◽  
Arina T. Nikitina ◽  
Ekaterina A. Sozonova ◽  
...  

Until recently, it was thought that there were no lymphatic vessels in the central nervous system (CNS). Therefore, all metabolic processes were assumed to take place only in the circulation of the cerebrospinal fluid (CSF) and through the blood-brain barrier’s (BBB), which regulate ion transport and ensure the functioning of the CNS. However, recent findings yield a new perspective: There is an exchange of CSF with interstitial fluid (ISF), which is drained to the paravenous space and reaches lymphatic nodes at the end. This circulation is known as the glymphatic system. The glymphatic system is an extensive network of meningeal lymphatic vessels (MLV) in the basal area of the skull that provides another path for waste products from CNS to reach the bloodstream. MLV develop postnatally, initially appearing around the foramina in the basal part of the skull and the spinal cord, thereafter sprouting along the skull’s blood vessels and spinal nerves in various areas of the meninges. VEGF-C protein (vascular endothelial growth factor), expressed mainly by vascular smooth cells, plays an important role in the development of the MLV. The regenerative potential and plasticity of MLV and the novel discoveries related to CNS drainage offer potential for the treatment of neurodegenerative diseases such as dementia, hydrocephalus, stroke, multiple sclerosis, and Alzheimer disease (AD). Herein, we present an overview of the structure and function of the glymphatic system and MLV, and their potential involvement in the pathology and progression of neurodegenerative diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie M. Schindler ◽  
Jonathan P. Little ◽  
Andis Klegeris

Microparticles (MPs) are a heterogeneous population of small cell-derived vesicles, ranging in size from 0.1 to 1 μm. They contain a variety of bioactive molecules, including proteins, biolipids, and nucleic acids, which can be transferred between cells without direct cell-to-cell contact. Consequently, MPs represent a novel form of intercellular communication, which could play a role in both physiological and pathological processes. Growing evidence indicates that circulating MPs contribute to the development of cancer, inflammation, and autoimmune and cardiovascular diseases. Most cell types of the central nervous system (CNS) have also been shown to release MPs, which could be important for neurodevelopment, CNS maintenance, and pathologies. In disease, levels of certain MPs appear elevated; therefore, they may serve as biomarkers allowing for the development of new diagnostic tools for detecting the early stages of CNS pathologies. Quantification and characterization of MPs could also provide useful information for making decisions on treatment options and for monitoring success of therapies, particularly for such difficult-to-treat diseases as cerebral malaria, multiple sclerosis, and Alzheimer’s disease. Overall, studies on MPs in the CNS represent a novel area of research, which promises to expand the knowledge on the mechanisms governing some of the physiological and pathophysiological processes of the CNS.


2014 ◽  
Vol 4 ◽  
pp. 407-416 ◽  
Author(s):  
Janina Rafalowska ◽  
Dorota Sulejczak ◽  
Stanisław J. Chrapusta ◽  
Roman Gadamski ◽  
Anna Taraszewska ◽  
...  

2022 ◽  
Vol 9 (1) ◽  
pp. 10-25
Author(s):  
Leonardo Ariel Cano ◽  
Alvaro Gabriel Pizá ◽  
Fernando Daniel Farfán

Many disciplines have approached the study of human motor behavior. The motor learning theory based on information processing proposes a learning loop through interaction between the external environment and the central nervous system. Different neuroscience fields and technological advances provide a new perspective for the intensive study of the intrinsic processes of motor behavior, which modify the most visible aspect: motor efficiency. The aim of the present review was to determine which cortical and muscular electrophysiological biomarkers available in the literature could be representative for the study and quantification of motor efficiency. In this review, a survey of the literature related to motor production has been performed. The continuous development of biological signal monitoring techniques has allowed to understand part of the communication methods of the central nervous system, the integration of neural networks, and the interaction between different anatomic structures through rhythmic patterns of discharge known as brain waves. Motor production has been characterized by detecting electrophysiological biomarkers, taking into account the connectivity that can be represented by the corticomuscular and intermuscular coherence indices in different frequency bands. The present work proposes an approach to use these biomarkers on beta-band (for muscle stability synergies) and gamma-band (for mobility synergies). These indices will allow establishing quantitative parameters for motor efficiency, which could improve the precision of sports assessment.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Sign in / Sign up

Export Citation Format

Share Document