Stimulation of human urothelial cell proliferation by estrogen receptor activation

Urology ◽  
2001 ◽  
Vol 57 (6) ◽  
pp. 102-103 ◽  
Author(s):  
J Teng ◽  
Z.Y Wang ◽  
D Bjorling
2003 ◽  
Vol 228 (1) ◽  
pp. 1-14 ◽  
Author(s):  
James W. Fisher

This minireview is an update of a 1997 review on erythropoletin (EPO) in this journal (1). EPO is a 30,400-dalton glycoprotein that regulates red cell production. In the human, EPO is produced by peritubular cells in the kidneys of the adult and in hepatocytes in the fetus. Small amounts of extra-renal EPO are produced by the liver in adult human subjects. EPO binds to an erythroid progenitor cell surface receptor that includes a p66 chain, and, when activated, the p66 protein becomes dimerized. EPO receptor activation induces a JAK2 tyrosine kinase, which leads to tyrosine phosphorylation of the EPO receptor and several proteins. EPO receptor binding leads to intracellular activation of the Ras/mitogen-activated kinase pathway, which is involved with cell proliferation, phosphatidylinositol 3-kinase, and STATS 1, 3, 5A, and 5B transcriptional factors. EPO acts primarily to rescue erythroid cells from apoptosis (programmed cell death) to increase their survival. EPO acts synergistically with several growth factors (SCF, GM-CSF, 1L-3, and IGF-1) to cause maturation and proliferation of erythroid progenitor cells (primarily colony-forming unit-E). Oxygen-dependent regulation of EPO gene expression is postulated to be controlled by a hypoxia-inducible transcription factor (HIF-1α). Hypoxia-inducible EPO production is controlled by a 50-bp hypoxia-inducible enhancer that is approximately 120 bp 3' to the polyadenylation site. Hypoxia signal transduction pathways involve kinases A and C, phospholipase A2, and transcription factors ATF-1 and CREB-1. A model has been proposed for adenosine activation of EPO production that involves protein kinases A and C and the phospholipase A2 pathway. Other effects of EPO include a hematocrit-independent, vasoconstriction-dependent hypertension, increased endothelin production, upregulation of tissue renin, change in vascular tissue prostaglandins production, stimulation of angiogenesis, and stimulation of endothelial and vascular smooth muscle cell proliferation. Recombinant human EPO (rHuEPO) is currently being used to treat patients with anemias associated with chronic renal failure, AIDS patients with anemia due to treatment with zidovudine, nonmyeloid malignancies in patients treated with chemotherapeutic agents, perioperative surgical patients, and autologous blood donation. A novel erythropolesis-stimulating factor (NESP, darbepoetin) has been synthesized and when compared with rHuEPO, NESP has a higher carbohydrate content (52% vs 40%), a longer plasma half-life, the amino acid sequence differs from that of native human EPO at five positions, and has been reported to maintain hemoglobin levels just as effectively in patients with chronic renal failure as rHuEPO at less frequent dosing. The use of rHuEPO and darbepoetin to enhance athletic performance is officially banned by most sports-governing bodies because the excessive erythrocytosis can lead to increased thrombogenicity and can cause deep vein, coronary, and cerebral thromboses.


2005 ◽  
Vol 306 (1) ◽  
pp. 216-229 ◽  
Author(s):  
Claire Varley ◽  
Gemma Hill ◽  
Stephanie Pellegrin ◽  
Nicola J. Shaw ◽  
Peter J. Selby ◽  
...  

2005 ◽  
Vol 49 (8) ◽  
pp. 763-771 ◽  
Author(s):  
Hester van der Woude ◽  
Marcel G. R. ter Veld ◽  
Natasja Jacobs ◽  
Paul T. van der Saag ◽  
Albertinka J. Murk ◽  
...  

2008 ◽  
Vol 15 (1) ◽  
pp. 351-364 ◽  
Author(s):  
J. Teng ◽  
Z.-Y. Wang ◽  
D. F Jarrard ◽  
D. E Bjorling

2020 ◽  
Vol 22 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Lin-Jun Sun ◽  
Chong Li ◽  
Xiang-hao Wen ◽  
Lu Guo ◽  
Zi-Fen Guo ◽  
...  

Background:: Icariin (ICA), one of the main effective components isolated from the traditional Chinese herb Epimedium brevicornu Maxim., has been reported to possess extensive pharmacological actions, including enhanced sexual function, immune regulation, anti-inflammation, and antiosteoporosis. Methods:: Our study was designed to investigate the effect of ICA on cell proliferation and differentiation and the molecular mechanism of OPG/RANKL mediated by the Estrogen Receptor (ER) in hFOB1.19 human osteoblast cells. Results:: The experimental results show that ICA can stimulate cell proliferation and increase the activity of Alkaline Phosphatase (ALP), Osteocalcin (BGP) and I Collagen (Col I) and a number of calcified nodules. Furthermore, the mRNA and protein expression of OPG and RANKL and the OPG/ RANKL mRNA and protein expression ratios were upregulated by ICA. The above-mentioned results indicated that the optimal concentration of ICA for stimulating osteogenesis was 50ng/mL. Subsequent mechanistic studies comparing 50ng/mL ICA with an estrogen receptor antagonist demonstrated that the effect of the upregulated expression is connected with the estrogen receptor. In conclusion, ICA can regulate bone formation by promoting cell proliferation and differentiation and upregulating the OPG/RANKL expression ratio by the ER in hFOB1.19 human osteoblast cells.


Sign in / Sign up

Export Citation Format

Share Document