Towards a ‘hot’ tumor phenotype: DKN-01 sensitizes the tumor micro-environment via pro-immune cell cytokine release in vitro and ex vivo

2021 ◽  
Vol 162 ◽  
pp. S12
Author(s):  
Jhalak Dholakia ◽  
Jaclyn Wall ◽  
Carly Bess Scalise ◽  
Ashwini Katre ◽  
Rebecca Arend
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Clovis Boibessot ◽  
France-Hélène Joncas ◽  
Aerin Park ◽  
Zohra Berrehail ◽  
Jean-François Pelletier ◽  
...  

AbstractWithin the prostate tumor microenvironment (TME) there are complex multi-faceted and dynamic communication occurring between cancer cells and immune cells. Macrophages are key cells which infiltrate and surround tumor cells and are recognized to significantly contribute to tumor resistance and metastases. Our understanding of their function in the TME is commonly based on in vitro and in vivo models, with limited research to confirm these model observations in human prostates. Macrophage infiltration was evaluated within the TME of human prostates after 72 h culture of fresh biopsies samples in the presence of control or enzalutamide. In addition to immunohistochemistry, an optimized protocol for multi-parametric evaluation of cellular surface markers was developed using flow cytometry. Flow cytometry parameters were compared to clinicopathological features. Immunohistochemistry staining for 19 patients with paired samples suggested enzalutamide increased the expression of CD163 relative to CD68 staining. Techniques to validate these results using flow cytometry of dissociated biopsies after 72 h of culture are described. In a second cohort of patients with Gleason grade group ≥ 3 prostate cancer, global macrophage expression of CD163 was unchanged with enzalutamide treatment. However, exploratory analyses of our results using multi-parametric flow cytometry for multiple immunosuppressive macrophage markers suggest subgroup changes as well as novel associations between circulating biomarkers like the neutrophil to lymphocyte ratio (NLR) and immune cell phenotype composition in the prostate TME. Further, we observed an association between B7–H3 expressing tumor-associated macrophages and the presence of intraductal carcinoma. The use of flow cytometry to evaluate ex vivo cultured prostate biopsies fills an important gap in our ability to understand the immune cell composition of the prostate TME. Our results highlight novel associations for further investigation.


2017 ◽  
Vol 313 (2) ◽  
pp. L406-L415 ◽  
Author(s):  
Gene T. Yocum ◽  
Damian L. Turner ◽  
Jennifer Danielsson ◽  
Matthew B. Barajas ◽  
Yi Zhang ◽  
...  

Emerging evidence indicates that hypnotic anesthetics affect immune function. Many anesthetics potentiate γ-aminobutyric acid A receptor (GABAAR) activation, and these receptors are expressed on multiple subtypes of immune cells, providing a potential mechanistic link. Like immune cells, airway smooth muscle (ASM) cells also express GABAARs, particularly isoforms containing α4-subunits, and activation of these receptors leads to ASM relaxation. We sought to determine if GABAAR signaling modulates the ASM contractile and inflammatory phenotype of a murine allergic asthma model utilizing GABAAR α4-subunit global knockout (KO; Gabra40/0) mice. Wild-type (WT) and Gabra4 KO mice were sensitized with house dust mite (HDM) antigen or exposed to PBS intranasally 5 days/wk for 3 wk. Ex vivo tracheal rings from HDM-sensitized WT and Gabra4 KO mice exhibited similar magnitudes of acetylcholine-induced contractile force and isoproterenol-induced relaxation ( P = not significant; n = 4). In contrast, in vivo airway resistance (flexiVent) was significantly increased in Gabra4 KO mice ( P < 0.05, n = 8). Moreover, the Gabra4 KO mice demonstrated increased eosinophilic lung infiltration ( P < 0.05; n = 4) and increased markers of lung T-cell activation/memory (CD62L low, CD44 high; P < 0.01, n = 4). In vitro, Gabra4 KO CD4+ cells produced increased cytokines and exhibited increased proliferation after stimulation of the T-cell receptor as compared with WT CD4+ cells. These data suggest that the GABAAR α4-subunit plays a role in immune cell function during allergic lung sensitization. Thus GABAAR α4-subunit-specific agonists have the therapeutic potential to treat asthma via two mechanisms: direct ASM relaxation and inhibition of airway inflammation.


2016 ◽  
Vol 7 ◽  
Author(s):  
Mohammadali Khan Mirzaei ◽  
Yeneneh Haileselassie ◽  
Marit Navis ◽  
Callum Cooper ◽  
Eva Sverremark-Ekström ◽  
...  

2021 ◽  
Author(s):  
R. Hugh F. Bender ◽  
Benjamen T O'Donnell ◽  
Bhupinder Shergill ◽  
Brittany Q Pham ◽  
Damie J Juat ◽  
...  

Insulin is an essential regulator of blood glucose homeostasis that is produced exclusively by β cells within the pancreatic islets of healthy individuals. In those affected by diabetes, immune inflammation, damage, and destruction of islet β cells leads to insulin deficiency and hyperglycemia. Current efforts to understand the mechanisms underlying β cell damage in diabetes rely on in vitro-cultured cadaveric islets. However, isolation of these islets involves removal of crucial matrix and vasculature that supports islets in the intact pancreas. Unsurprisingly, these islets demonstrate reduced functionality over time in standard culture conditions, thereby limiting their value for understanding native islet biology. Leveraging a novel, vascularized micro-organ (VMO) approach, we have recapitulated elements of the native pancreas by incorporating isolated human islets within a three-dimensional matrix nourished by living, perfusable blood vessels. Importantly, these islets show long-term viability and maintain robust glucose-stimulated insulin responses. Furthermore, vessel-mediated delivery of immune cells to these tissues provides a model to assess islet-immune cell interactions and subsequent islet killing -- key steps in type 1 diabetes pathogenesis. Together, these results establish the islet-VMO as a novel, ex vivo platform for studying human islet biology in both health and disease.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Nico Andreas ◽  
Sylvia Müller ◽  
Nicole Templin ◽  
Paul M. Jordan ◽  
Harald Schuhwerk ◽  
...  

Abstract Background The incidence of rheumatoid arthritis is correlated with age. In this study, we analyzed the association of the incidence and severity of glucose-6-phosphate isomerase (G6PI)-induced arthritis with age in two different mouse strains. Methods Young and very old mice from two different arthritis-susceptible wild-type mouse strains were analyzed after a single subcutaneous injection of G6PI s.c. The metabolism and the function of synoviocytes were analyzed in vitro, the production of bioactive lipid mediators by myeloid cells and synoviocytes was assessed in vitro and ex vivo by UPLC-MS-MS, and flow cytometry was used to verify age-related changes of immune cell composition and function. Results While the severity of arthritis was independent from age, the onset was delayed in old mice. Old mice showed common signs of immune aging like thymic atrophy associated with decreased CD4+ effector T cell numbers. Despite its decrease, the effector T helper (Th) cell compartment in old mice was reactive and functionally intact, and their Tregs exhibited unaltered suppressive capacities. In homeostasis, macrophages and synoviocytes from old mice produced higher amounts of pro-inflammatory cyclooxygenase (COX)-derived products. However, this functional difference did not remain upon challenge in vitro nor upon arthritis reactions ex vivo. Conclusion While old mice show a higher baseline of inflammatory functions, this does not result in increased reaction towards self-antigens in arthritis-susceptible mouse strains. Together, our data from two different mouse strains show that the susceptibility for G6PI-induced arthritis is not age-dependent.


2002 ◽  
Vol 9 (3) ◽  
pp. 588-597 ◽  
Author(s):  
Yukari Nakagawa ◽  
Hideko Maeda ◽  
Toshimi Murai

ABSTRACT The reliability of an in vitro pyrogen test system based on proinflammatory cytokine release from human monocytic cells was assessed by comparison with a test system based on a human whole blood culture as well as with the conventional rabbit pyrogen test. The human cells used as the pyrogen indicator cells were newly selected by subcloning of a human monocytic cell line, Mono-Mac-6. The selected cells, named MM6-CA8, responded to various pyrogens, including endotoxin, peptidoglycan (PG), Staphylococcus aureus Cowan 1 (SAC), and poly(I ·  C), with a high sensitivity and produced proinflammatory cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor alpha. Among these cytokines, IL-6 was produced most sensitively in response to traces of the pyrogens and detected in the largest quantities in the culture medium. The cytokine-producing responses of MM6-CA8 cells correlated significantly with the responses of cultured human whole blood, which represents an ex vivo culture test system reproducing pyrogen-induced cytokine production in the human body. In terms of cytokine inducibility, the pyrogens were ranked in the order endotoxin > PG > poly (I · C) > SAC in both culture systems, a ranking which almost agreed with the ranking of their pyrogenicity as assessed by the rabbit pyrogen test. These results suggest that the in vitro responsiveness of MM6-CA8 cells to various pyrogens is highly relevant for human pyrogenic reactions. Therefore, the in vitro test system is useful and reliable for detecting the presence of materials that are pyrogenic for humans.


2002 ◽  
Vol 30 (6) ◽  
pp. 581-595 ◽  
Author(s):  
Ingrid Langezaal ◽  
Sebastian Hoffmann ◽  
Thomas Hartung ◽  
Sandra Coecke

Immunotoxicology is a relatively new field in toxicology, and is one of emerging importance, because immunotoxicity appears to contribute to the development of cancer, autoimmune disorders, allergies and other diseases. At present, there is a lack of human cell-based immunotoxicity assays for predicting the toxicity of xenobiotics toward the immune system in a simple, fast, economical and reliable way. Existing immunotoxicity tests are mainly performed in animals, although species differences favour human-based testing. Whole-blood cytokine release models have attracted increasing interest, and are broadly used for pharmacological in vitro and ex vivo studies, as well as for pyrogenicity testing. We have adapted those methods for immunotoxicity testing, to permit the potency testing of immunostimulants and immunosuppressants. Following stimulation with a lipopolysaccharide or staphylococcal enterotoxin B, monocytes and lymphocytes release interleukin-1β and interleukin-4, respectively. Thirty-one pharmaceutical compounds, with known effects on the immune system, were used to optimise and standardise the method, by analysing their effects on cytokine release. The in vitro results were expressed as IC50 values for immunosuppression, and SC4 (fourfold increase) values for immunostimulation, and compared with therapeutic serum concentrations of the compounds in patients, and in vivo LD50 values from animal studies. The in vitro results correlated well with the in vivo data, so the test appears to reflect immunomodulation. Results were reproducible (CV = 20 ± 5%), and the method could be transferred to another laboratory (r2 = 0.99). We therefore propose this method for further validation and for use in immunotoxicity testing strategies.


2017 ◽  
Vol 7 ◽  
Author(s):  
Mohammadali Khan Mirzaei ◽  
Yeneneh Haileselassie ◽  
Marit Navis ◽  
Callum Cooper ◽  
Eva Sverremark-Ekström ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A928-A928
Author(s):  
Steve Sazinsky ◽  
Phuong Nguyen ◽  
Mohammad Zafari ◽  
Ryan Phennicie ◽  
Joe Wahle ◽  
...  

BackgroundVSIG4 (V-set immunoglobulin-domain-containing 4) is a B7 family related protein with known roles as a complement receptor involved in pathogen clearance as well as a negative regulator of T cell activation by an undetermined mechanism.1–3 VSIG4 is expressed in tumor associated macrophages (TAMs) with exquisite specificity. In cancer, increased expression of VSIG4 has been associated with worse survival in multiple indications, including non-small cell lung cancer, multiple myeloma, ovarian cancer, and glioma, suggesting an important role in tumor immune evasion.3–6 Based upon computational analysis of transcript data across thousands of primary cancer and normal tissue samples, we hypothesized that VSIG4 has an important regulatory role in promoting M2-like immune suppressive macrophages in the tumor microenvironment, and that targeting VSIG4 via a monoclonal antibody could relieve VSIG4-mediated macrophage suppression by repolarizing TAMs to an inflammatory phenotype capable of coordinating an anti-tumor immune response.MethodsThe ability of anti-VSIG4 antibodies to repolarize M2-like macrophages and induce T cell activation was assessed in vitro and ex vivo, by measuring production of inflammatory mediators. In vitro assays were performed primarily with M-CSF plus IL-10 driven monocyte-derived M2c macrophages from healthy donors. Ex vivo assays were performed with fresh, patient-derived tumor samples in culture. To determine whether targeting VSIG4 can lead to an anti-tumor effect in vivo, syngeneic mouse models were dosed with anti-mouse VSIG4 antibodies and characterized for changes in tumor volume and immune cell populations.ResultsIn in vitro and ex vivo assays anti-VSIG4 antibodies repolarize M2 macrophages and induce an immune response culminating in T cell activation. Targeting VSIG4 upregulates pro-inflammatory cytokines in M2c macrophages, as well as upregulates pro-inflammatory myeloid-derived cytokines and T cell-derived cytokines in M2c macrophages co-cultured with autologous T cells in the presence of staphylococcal enterotoxin B (SEB) activation. To assess targeting VSIG4 in a relevant translational model, fresh, patient-derived tumor samples were treated ex vivo with anti-VSIG4. Across multiple tumor types, anti-VSIG4 treatment resulted in a significant upregulation of cytokines involved in TAM repolarization and T cell activation, and chemokines involved in immune cell recruitment, at levels greater than observed by treatment with anti-PD-1 or a clinical macrophage repolarizing agent (anti-ILT-4). In vivo, tumor growth inhibition is observed in syngeneic mouse models dosed with anti-mouse-VSIG4 alone and in combination with anti-PD-1.ConclusionsTaken together, these data suggest that VSIG4 represents a promising new target capable of stimulating an anti-cancer response via multiple key immune mechanisms.Referencesvan Lookeren Campagne M, Verschoor A. Pathogen clearance and immune adherence “revisited”: immuno-regulatory roles for CRIg. Semin Immunol 2018;37:4–11.Xu S, Sun Z, Li L, Liu J, He J, Song D, Shan G, Liu H, Wu X. Induction of T cells suppression by dendritic cells transfected with VSIG4 recombinant adenovirus. Immunol Lett 2010;128(1):46–50.Liao Y, Guo S, Chen Y, Cao D, Xu H, Yang C, Fei L, Ni B, Ruan Z. VSIG4 expression on macrophages facilitates lung cancer development. Lab Invest 2014;94(7):706–715.Roh J, Jeon Y, Lee A, Lee S, Kim Y, Sung C, Park C, Hong J, Yoon D, Suh C, Huh J, Choi I, Park C. The immune checkpoint molecule V-set Ig domain-containing 4 is an independent prognostic factor for multiple myeloma. Oncotarget 2017;8(35):58122–58132.Xu T, Jiang Y, Yan Y, Wang H, Lu C, Xu H, Li W, Fu D, Lu Y, Chen J. VSIG4 is highly expressed and correlated with poor prognosis of high-grade glioma patients. Am J Transl Res 2015;7(6):1172–1180.Byun J, Jeong D, Choi I, Lee D, Kang M, Jung K, Jeon Y, Kim Y, Jung E, Lee K, Sung M, Kim K. The significance of VSIG4 expression in ovarian cancer. Int J Gynecol Cancer 2017;27(5):872–878.Ethics ApprovalAll legal and ethical requirements were met with regards to the humane treatment of animals described in the study. The animal study was conducted in compliance with CRL IACUC under IACUC No. I033.


2020 ◽  
Author(s):  
Alex S Genshaft ◽  
Carly G. K. Ziegler ◽  
Constantine N. Tzouanas ◽  
Benjamin E. Mead ◽  
Alex M. Jaeger ◽  
...  

ABSTRACTWhether cultured in vitro or part of a complex tissue in vivo, a cell’s phenotype and function are significantly influenced by dynamic interactions with its microenvironment. To explicitly examine how a cell’s spatiotemporal activity impacts its behavior, we developed and validated a strategy termed SPACECAT—Spatially PhotoActivatable Color Encoded Cell Address Tags—to annotate, track, and isolate specific cells in a non-destructive, viability-preserving manner. In SPACECAT, a biological sample is immersed in a photocaged fluorescent molecule, and cells within a location of interest are labeled for further study by uncaging that molecule with user-patterned near-UV light. SPACECAT offers high spatial precision and temporal stability across diverse cell and tissue types, and is compatible with common downstream assays, including flow cytometry and single-cell RNA-Seq. Illustratively, we leveraged this approach in patient-derived intestinal organoids, a spatially complex system less amenable to genetic manipulations, to select for crypt-like regions enriched in stem-like and actively mitotic cells. Moreover, we demonstrate its applicability and utility on ex vivo tissue sections from four healthy organs and an autochthonous lung tumor model, uncovering spatially-biased gene expression patterns among immune cell subsets and identifying rare myeloid phenotypes enriched around tumor/healthy border regions. In sum, our method provides a minimally invasive and broadly applicable approach to link cellular spatiotemporal features and/or behavioral phenotypes with diverse downstream assays, enabling fundamental insights into the connections between tissue microenvironments and biological (dys)function.


Sign in / Sign up

Export Citation Format

Share Document