scholarly journals Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1

Cell ◽  
2002 ◽  
Vol 108 (3) ◽  
pp. 345-356 ◽  
Author(s):  
Victor Bernier-Villamor ◽  
Deborah A. Sampson ◽  
Michael J. Matunis ◽  
Christopher D. Lima
2006 ◽  
Vol 34 (2) ◽  
pp. 89-100 ◽  
Author(s):  
Michael J. Lewis ◽  
Linda F. Saltibus ◽  
D. Duong Hau ◽  
Wei Xiao ◽  
Leo Spyracopoulos

2007 ◽  
Vol 35 (6) ◽  
pp. 1409-1413 ◽  
Author(s):  
J. Anckar ◽  
L. Sistonen

Post-translational modification of cellular proteins by the SUMO (small ubiquitin-related modifier) is involved in numerous modes of regulation in widely different biological processes. In contrast with ubiquitination, SUMO conjugation is highly specific in terms of target lysine residues, but many aspects of substrate and lysine selection by the SUMO conjugating machinery are still poorly understood. SUMOylation events usually occur on the ΨKXE SUMO consensus motifs, which mediate binding to Ubc9 (ubiquitin-conjugating enzyme 9), the SUMO E2 conjugating enzyme. Although most, if not all, SUMO conjugations are catalysed by Ubc9, far from all ΨKXE tetrapeptides are modified, demonstrating a need for additional specificity determinants in SUMOylation. Recent results intimately link regulation of SUMOylation to other post-translational modifications, including phosphorylation and acetylation and reveal that certain lysine residues are marked for SUMOylation by negatively charged amino acid residues or phosphorylation events immediately downstream of the consensus site. In the present review, we explore the intriguing role of extended motifs in the regulation of SUMO conjugation.


2004 ◽  
Vol 24 (10) ◽  
pp. 4267-4274 ◽  
Author(s):  
Lajos Haracska ◽  
Carlos A. Torres-Ramos ◽  
Robert E. Johnson ◽  
Satya Prakash ◽  
Louise Prakash

ABSTRACT The Rad6-Rad18 ubiquitin-conjugating enzyme complex of Saccharomyces cerevisiae promotes replication through DNA lesions via three separate pathways that include translesion synthesis (TLS) by DNA polymerases ζ (Polζ) and Polη and postreplicational repair mediated by the Mms2-Ubc13 ubiquitin-conjugating enzyme and Rad5. Here we report our studies with a proliferating cell nuclear antigen (PCNA) mutation, pol30-119, which results from a change of the lysine 164 residue to arginine. It has been shown recently that following treatment of yeast cells with DNA-damaging agents, the lysine 164 residue of PCNA becomes monoubiquitinated in a Rad6-Rad18-dependent manner and that subsequently this PCNA residue is polyubiquitinated via a lysine 63-linked ubiquitin chain in an Mms2-Ubc13-, Rad5-dependent manner. PCNA is also modified by SUMO conjugation at the lysine 164 residue. Our genetic studies with the pol30-119 mutation show that in addition to conferring a defect in Polζ-dependent UV mutagenesis and in Polη-dependent TLS, this PCNA mutation inhibits postreplicational repair of discontinuities that form in the newly synthesized strand across from UV lesions. In addition, we provide evidence for the activation of the RAD52 recombinational pathway in the pol30-119 mutant and we infer that SUMO conjugation at the lysine 164 residue of PCNA has a role in suppressing the Rad52-dependent postreplicational repair pathway.


2016 ◽  
Vol 36 (11) ◽  
pp. 1720-1732 ◽  
Author(s):  
Spencer Hill ◽  
Joseph S. Harrison ◽  
Steven M. Lewis ◽  
Brian Kuhlman ◽  
Gary Kleiger

Lysine selectivity is of critical importance during polyubiquitin chain formation because the identity of the lysine controls the biological outcome. Ubiquitins are covalently linked in polyubiquitin chains through one of seven lysine residues on its surface and the C terminus of adjacent protomers. Lys 48-linked polyubiquitin chains signal for protein degradation; however, the structural basis for Lys 48 selectivity remains largely unknown. The ubiquitin-conjugating enzyme Ube2R1/2 has exquisite specificity for Lys 48, and computational docking of Ube2R1/2 and ubiquitin predicts that Lys 48 is guided to the active site through a key electrostatic interaction between Arg 54 on ubiquitin and Asp 143 on Ube2R1/2. The validity of this interaction was confirmed through biochemical experiments. Since structural examples involving Arg 54 in protein-ubiquitin complexes are exceedingly rare, these results provide additional insight into how ubiquitin-protein complexes can be stabilized. We discuss how these findings relate to how other ubiquitin-conjugating enzymes direct the lysine specificity of polyubiquitin chains.


Author(s):  
Walker M. Jones ◽  
Aaron G. Davis ◽  
R. Hunter Wilson ◽  
Katherine L. Elliott ◽  
Isaiah Sumner

We present classical molecular dynamics (MD), Born-Oppenheimer molecular dynamics (BOMD), and hybrid quantum mechanics/molecular mechanics (QM/MM) data. MD was performed using the GPU accelerated pmemd module of the AMBER14MD package. BOMD was performed using CP2K version 2.6. The reaction rates in BOMD were accelerated using the Metadynamics method. QM/MM was performed using ONIOM in the Gaussian09 suite of programs. Relevant input files for BOMD and QM/MM are available.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yi-Chao Zheng ◽  
Yan-Jia Guo ◽  
Bo Wang ◽  
Chong Wang ◽  
M. A. A. Mamun ◽  
...  

AbstractUbiquitin-conjugating enzyme E2 M (UBE2M) and ubiquitin-conjugating enzyme E2 F (UBE2F) are the two NEDD8-conjugating enzymes of the neddylation pathway that take part in posttranslational modification and change the activity of target proteins. The activity of E2 enzymes requires both a 26-residue N-terminal docking peptide and a conserved E2 catalytic core domain, which is the basis for the transfer of neural precursor cell-expressed developmentally downregulated 8 (NEDD8). By recruiting E3 ligases and targeting cullin and non-cullin substrates, UBE2M and UBE2F play diverse biological roles. Currently, there are several inhibitors that target the UBE2M-defective in cullin neddylation protein 1 (DCN1) interaction to treat cancer. As described above, this review provides insights into the mechanism of UBE2M and UBE2F and emphasizes these two E2 enzymes as appealing therapeutic targets for the treatment of cancers.


2000 ◽  
Vol 11 (8) ◽  
pp. 2821-2831 ◽  
Author(s):  
Atsushi Yamanaka ◽  
Shigetsugu Hatakeyama ◽  
Kin-ichiro Kominami ◽  
Masatoshi Kitagawa ◽  
Masaki Matsumoto ◽  
...  

Progression through mitosis requires the precisely timed ubiquitin-dependent degradation of specific substrates. E2-C is a ubiquitin-conjugating enzyme that plays a critical role with anaphase-promoting complex/cyclosome (APC/C) in progression of and exit from M phase. Here we report that mammalian E2-C is expressed in late G2/M phase and is degraded as cells exit from M phase. The mammalian E2-C shows an autoubiquitinating activity leading to covalent conjugation to itself with several ubiquitins. The ubiquitination of E2-C is strongly enhanced by APC/C, resulting in the formation of a polyubiquitin chain. The polyubiquitination of mammalian E2-C occurs only when cells exit from M phase. Furthermore, mammalian E2-C contains two putative destruction boxes that are believed to act as recognition motifs for APC/C. The mutation of this motif reduced the polyubiquitination of mammalian E2-C, resulting in its stabilization. These results suggest that mammalian E2-C is itself a substrate of the APC/C-dependent proteolysis machinery, and that the periodic expression of mammalian E2-C may be a novel autoregulatory system for the control of the APC/C activity and its substrate specificity.


2014 ◽  
Vol 5 (1) ◽  
Author(s):  
Huiyuan Zhang ◽  
Hongbo Hu ◽  
Nathaniel Greeley ◽  
Jin Jin ◽  
Allison J Matthews ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document