SUMO: getting it on

2007 ◽  
Vol 35 (6) ◽  
pp. 1409-1413 ◽  
Author(s):  
J. Anckar ◽  
L. Sistonen

Post-translational modification of cellular proteins by the SUMO (small ubiquitin-related modifier) is involved in numerous modes of regulation in widely different biological processes. In contrast with ubiquitination, SUMO conjugation is highly specific in terms of target lysine residues, but many aspects of substrate and lysine selection by the SUMO conjugating machinery are still poorly understood. SUMOylation events usually occur on the ΨKXE SUMO consensus motifs, which mediate binding to Ubc9 (ubiquitin-conjugating enzyme 9), the SUMO E2 conjugating enzyme. Although most, if not all, SUMO conjugations are catalysed by Ubc9, far from all ΨKXE tetrapeptides are modified, demonstrating a need for additional specificity determinants in SUMOylation. Recent results intimately link regulation of SUMOylation to other post-translational modifications, including phosphorylation and acetylation and reveal that certain lysine residues are marked for SUMOylation by negatively charged amino acid residues or phosphorylation events immediately downstream of the consensus site. In the present review, we explore the intriguing role of extended motifs in the regulation of SUMO conjugation.

Cancers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 239 ◽  
Author(s):  
Lucia Santorelli ◽  
Giulia Capitoli ◽  
Clizia Chinello ◽  
Isabella Piga ◽  
Francesca Clerici ◽  
...  

Protein N-glycosylation is one of the most important post-translational modifications and is involved in many biological processes, with aberrant changes in protein N-glycosylation patterns being closely associated with several diseases, including the progression and spreading of tumours. In light of this, identifying these aberrant protein glycoforms in tumours could be useful for understanding the molecular mechanism of this multifactorial disease, developing specific biomarkers and finding novel therapeutic targets. We investigated the urinary N-glycoproteome of clear cell renal cell carcinoma (ccRCC) patients at different stages (n = 15 at pT1 and n = 15 at pT3), and of non-ccRCC subjects (n = 15), using an N-glyco-FASP-based method. Using label-free nLC-ESI MS/MS, we identified and quantified several N-glycoproteins with altered expression and abnormal changes affecting the occupancy of the glycosylation site in the urine of RCC patients compared to control. In particular, nine of them had a specific trend that was directly related to the stage progression: CD97, COCH and P3IP1 were up-expressed whilst APOB, FINC, CERU, CFAH, HPT and PLTP were down-expressed in ccRCC patients. Overall, these results expand our knowledge related to the role of this post-translational modification in ccRCC and translation of this information into pre-clinical studies could have a significant impact on the discovery of novel biomarkers and therapeutic target in kidney cancer.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6682
Author(s):  
Sachiko Toma-Fukai ◽  
Toshiyuki Shimizu

The post-translational modification of proteins regulates many biological processes. Their dysfunction relates to diseases. Ubiquitination is one of the post-translational modifications that target lysine residue and regulate many cellular processes. Three enzymes are required for achieving the ubiquitination reaction: ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3). E3s play a pivotal role in selecting substrates. Many structural studies have been conducted to reveal the molecular mechanism of the ubiquitination reaction. Recently, the structure of PCAF_N, a newly categorized E3 ligase, was reported. We present a review of the recent progress toward the structural understanding of E3 ligases.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4247
Author(s):  
Alexandra De Zutter ◽  
Jo Van Damme ◽  
Sofie Struyf

Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.


2020 ◽  
Vol 64 (1) ◽  
pp. 97-110
Author(s):  
Christian Sibbersen ◽  
Mogens Johannsen

Abstract In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.


2019 ◽  
Vol 23 (15) ◽  
pp. 1663-1670 ◽  
Author(s):  
Chunyan Ao ◽  
Shunshan Jin ◽  
Yuan Lin ◽  
Quan Zou

Protein methylation is an important and reversible post-translational modification that regulates many biological processes in cells. It occurs mainly on lysine and arginine residues and involves many important biological processes, including transcriptional activity, signal transduction, and the regulation of gene expression. Protein methylation and its regulatory enzymes are related to a variety of human diseases, so improved identification of methylation sites is useful for designing drugs for a variety of related diseases. In this review, we systematically summarize and analyze the tools used for the prediction of protein methylation sites on arginine and lysine residues over the last decade.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Amir Ata Saei ◽  
Christian M. Beusch ◽  
Pierre Sabatier ◽  
Juan Astorga Wells ◽  
Hassan Gharibi ◽  
...  

AbstractDespite the immense importance of enzyme–substrate reactions, there is a lack of general and unbiased tools for identifying and prioritizing substrate proteins that are modified by the enzyme on the structural level. Here we describe a high-throughput unbiased proteomics method called System-wide Identification and prioritization of Enzyme Substrates by Thermal Analysis (SIESTA). The approach assumes that the enzymatic post-translational modification of substrate proteins is likely to change their thermal stability. In our proof-of-concept studies, SIESTA successfully identifies several known and novel substrate candidates for selenoprotein thioredoxin reductase 1, protein kinase B (AKT1) and poly-(ADP-ribose) polymerase-10 systems. Wider application of SIESTA can enhance our understanding of the role of enzymes in homeostasis and disease, opening opportunities to investigate the effect of post-translational modifications on signal transduction and facilitate drug discovery.


2020 ◽  
Vol 22 (1) ◽  
pp. 323
Author(s):  
Ramesh Kumar ◽  
Divya Mehta ◽  
Nimisha Mishra ◽  
Debasis Nayak ◽  
Sujatha Sunil

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins’ functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


2013 ◽  
Vol 450 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Shankha Satpathy ◽  
Arash Nabbi ◽  
Karl Riabowol

The five human ING genes encode at least 15 splicing isoforms, most of which affect cell growth, differentiation and apoptosis through their ability to alter gene expression by epigenetic mechanisms. Since their discovery in 1996, ING proteins have been classified as type II tumour suppressors on the basis of reports describing their down-regulation and mislocalization in a variety of cancer types. In addition to their regulation by transcriptional mechanisms, understanding the range of PTMs (post-translational modifications) of INGs is important in understanding how ING functions are fine-tuned in the physiological setting and how they add to the repertoire of activities affected by the INGs. In the present paper we review the different PTMs that have been reported to occur on INGs. We discuss the PTMs that modulate ING function under normal conditions and in response to a variety of stresses. We also describe the ING PTMs that have been identified by several unbiased MS-based PTM enrichment techniques and subsequent proteomic analysis. Among the ING PTMs identified to date, a subset has been characterized for their biological significance and have been shown to affect processes including subcellular localization, interaction with enzymatic complexes and ING protein half-life. The present review aims to highlight the emerging role of PTMs in regulating ING function and to suggest additional pathways and functions where PTMs may effect ING function.


2008 ◽  
Vol 36 (5) ◽  
pp. 868-873 ◽  
Author(s):  
Ana Talamillo ◽  
Jonatan Sánchez ◽  
Rosa Barrio

SUMOylation, a reversible process used as a ‘fine-tuning’ mechanism to regulate the role of multiple proteins, is conserved throughout evolution. This post-translational modification affects several cellular processes by the modulation of subcellular localization, activity or stability of a variety of substrates. A growing number of proteins have been identified as targets for SUMOylation, although, for many of them, the role of SUMO conjugation on their function is unknown. The use of model systems might facilitate the study of SUMOylation implications in vivo. In the present paper, we have compiled what is known about SUMOylation in Drosophila melanogaster, where the use of genetics provides new insights on SUMOylation's biological roles.


2020 ◽  
Author(s):  
Abraham Más ◽  
Laura Castaño-Miquel ◽  
Lorenzo Carretero-Paulet ◽  
Núria Colomé ◽  
Francesc Canals ◽  
...  

AbstractPost-translational modification by Small Ubiquitin-related Modifier (SUMO) is an essential regulatory mechanism in eukaryotes. In the cell, SUMO conjugates are highly enriched in the nucleus and, consistently, SUMOylation machinery components are mainly nuclear. Nonetheless, cytosolic SUMO targets also exist and the mechanisms that facilitate SUMO conjugation in the cytosol are unknown. Here, we show that the nuclear localization of the Arabidopsis SUMO activating enzyme large subunit SAE2 is dependent on two nuclear localization signals, the canonical NLS1 and the non-canonical NLS2 identified and validated here. NLS2 is proteolytic processed from SAE2 during seed development, facilitating SAE2 enrichment in the cytosol. Results obtained using transgenic plants expressing different SAE2 proteoforms suggest that SAE2 cytosolic enrichment could constitute a rapid signal for growth arrest. Phylogenetic studies indicated that the Arabidopsis NLS1-NLS2 structural organization is conserved only in seed plants, providing a potential evolutionary role of cytosolic SUMOylation in seed appearance.


Sign in / Sign up

Export Citation Format

Share Document