Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a petroleum-contaminated soil

2002 ◽  
Vol 43 (3) ◽  
pp. 219
2021 ◽  
Author(s):  
Dalel Daâssi ◽  
Fatimah Qabil Almaghribi

Abstract The aim of this work was to isolate indigenous PAH degrading-fungi from petroleum contaminated soil and exogenous ligninolytic strains from decaying-wood, with the ability to secrete diverse enzyme activity. A total of ten ligninolytic fungal isolates and two native strains, has been successfully isolated, screened and identified. The phylogenetic analysis revealed that the indigenous fungi (KBR1 and KB8) belong to the genus Aspergillus niger and tubingensis. While the ligninolytic exogenous PAH-degrading strains namely KBR1-1, KB4, KB2 and LB3 were affiliated to different genera like Syncephalastrum sp, Paecilomyces formosus, Fusarium chlamydosporum, and Coniochaeta sp., respectively. Basis on the taxonomic analysis, enzymatic activities and the hydrocarbons removal rates, single fungal culture employing the strain LB3, KB4, KBR1 and the mixed culture (LB3+KB4) were selected to be used in soil microcosms treatments. The Total petroleum hydrocarbons (TPH), fungal growth rates, BOD5/COD ratios and GC-MS analysis, were determined in all soil microcosmos treatments (SMT) and compared with those of the control (SMU). After 60 days of culture incubation, the highest rate of TPH degradation was recorded in SMT[KB4] by approximately 92±2.35% followed by SMT[KBR1] then SMT[LB3+KB4] with 86.66±1.83% and 85.14±2.21%, respectively.


2020 ◽  
Vol 26 (5) ◽  
pp. 200384-0
Author(s):  
Jianbo Liu ◽  
Liming Xu ◽  
Feifei Zhu ◽  
Shouhao Jia

It has been proven that surfactants used in the remediation of petroleum hydrocarbon contaminated soil have great application potential. In this study, the effects of five surfactants (SDBS, Tween80, Tween60, rhamnolipid and TRS-1) on leaching of petroleum hydrocarbons from soil were investigated through orthogonal experiments, and petroleum hydrocarbon components were analyzed by GC/MS. The effects of surfactants on the degradation of petroleum hydrocarbon were analyzed by the changes of microbial growth curve and surface hydrophobicity. The results showed that surfactant type, temperature and surfactant concentration had significant effects on the removal rate of petroleum hydrocarbon. Tween80, rhamnolipid and TRS-1 have good bio-friendliness and a high removal rate of petroleum hydrocarbons (up to 65%), suitable for the restoration of the soil used in the experiment And Surfactants exhibited a higher removal rate for small molecules and petroleum hydrocarbons with odd carbon atoms. Surfactants have a certain modification effect on the surface of relatively hydrophilic bacteria under the initial conditions, making their surface properties develop in the direction of enhanced hydrophobicity, and the hydrophobicity has increased from less than 20% to about 40%.


2019 ◽  
Vol 19 (2) ◽  
pp. 347 ◽  
Author(s):  
Abubakar Tuhuloula ◽  
Suprapto Suprapto ◽  
Ali Altway ◽  
Sri Rachmania Juliastuti

Contamination of soil by the activities of exploration, production, and disposal of oil waste into the environment causes serious damage to the environmental ecosystem, the target of processing by the bacteria as a model for remediation of oil contaminated site. Thus, the study was focused on determining the biodegradation percentage of extractable petroleum hydrocarbons as a function of the oil concentration. This research was conducted in a slurry bioreactor with mixed contaminated soil to water ratio of 20:80 (wt.%). A consortium of Bacillus cereus and Pseudomonas putida bacteria 10% (v/v) and 15% (v/v) with the ratio of 2:3, 1:1, and 3:2 was inserted into the slurry bioreactor and a single reactor was used as a control. The result of identification with an initial concentration of extractable petroleum hydrocarbons of 299.53 ng/µL, after 49 days of incubation for bacterial consortium 10% (v/v), the concentration was reduced to 85.31; 32.43; 59.74; and 112.22 ng/µL respectively and the biodegradation percentage was 71.5; 89.17; 80.05; and 62.54%. As for the bacterial consortium concentration of 15% (v/v) with the same ratio and control, the effluent concentration was 12.48; 7.72; 18.93 ng/µL, respectively or the biodegradation percentage was 95.83; 97.42; 93.68%.


Author(s):  
Wei Zhang ◽  
Yun-guo Liu ◽  
Xiao-fei Tan ◽  
Guang-ming Zeng ◽  
Ji-lai Gong ◽  
...  

Soil contamination with petroleum hydrocarbons and heavy metals is a widespread environmental problem. In recent years, cyclodextrin has attracted research interest because of its special hole structure that can form inclusion complexes with certain small molecules. However, the solubility of β-cyclodextrin (β-CD) in water is low and it crystallizes easily, leading to its low utilization in practice. In this experiment, we connected β-CD with glycine under alkaline conditions to prepare glycine-β-cyclodextrin (G-β-CD), which is water soluble, has stronger coordinating ability with heavy metals, and is more suitable for treating oil-contaminated soil. The results show that G-β-CD provides better desorption of petroleum hydrocarbons and heavy metals in soils with low organic matter content (1%) and NaNO3 of 0.25 mol/L at 70 g/L G-β-CD under mildly acidic (pH 5–6) conditions. The results indicate that petroleum hydrocarbons and heavy metals were removed simultaneously by means of pretreatment with G-β-CD, and the results can provide a theoretical basis for remediation of petroleum-contaminated soil.


2017 ◽  
Author(s):  
Charlotte Marchand ◽  
Fabio Kaczala ◽  
Yahya Jani ◽  
William Hogland

Underground storage tanks uses for waste cars draining contain many hazardous materials including hydrocarbons. These compounds pose a significant threat to the environment and affect negatively the health of living. Phytoremediation is an environmental friendly method used during the last few decades to eliminating organics pollutants from soil, sediment and water. The remediation capability of alfalfa (Medicago sativa) to treat petroleum-contaminated soil from an old car scrap yard in Nybro, Sweden was further investigated using greenhouse pot-scale experiments. After five months, alfalfa survival capacity and dry biomass were significantly lower in contaminated soil (CS) in comparison to non-contaminated soil (NCS). Only 5% of plants survived in CS and petroleum hydrocarbon C10-C50 content in planted treatment were not statistically lower in comparison to the unplanted treatment. Further studies are in process to evaluate the possible degradation of hydrocarbons using organic amendment


2013 ◽  
Vol 864-867 ◽  
pp. 67-70
Author(s):  
Xue Ying Song ◽  
Ru Jing Liang ◽  
Yu Shuang Li ◽  
Xin Xin Li ◽  
Xiao Jun Hu

Composting has been shown to be an effective bioremediation technique for the treatment of hydrocarbon-contaminated soil. In this research, the major objective of this research was to find the appropriate mix ratio of organic amendments for enhancing the degradation of petroleum hydrocarbons during diesel oil contaminated soil composting. The spent mushroom was added as an amendment for supplementing organic matter for composting of contaminated soil. The volumn ratios of contaminated soil to organic amendments were 1:1, 1.5:1 and 2:1. Target contaminant of this research was diesel oil, which was spiked at 16240 mg/kg sample on a dry weight basis. The degradation of diesel oil was significantly enhanced by the addition of these organic amendments relative to straight soil control. Degradation rates of total petroleum hydrocarbons (TPH) were the greatest at the ratio of 1:1 of contaminated soil to organic amendments on the volumn ratio. The abiotic loss of TPH was only about 6.83% of initial TPH.


2010 ◽  
Vol 7 (12) ◽  
pp. 3961-3969 ◽  
Author(s):  
J. C. Tang ◽  
R. G. Wang ◽  
X. W. Niu ◽  
M. Wang ◽  
H. R. Chu ◽  
...  

Abstract. Pilot experiments were conducted to analyse the effect of different environmental factors on the rhizoremediation of petroleum-contaminated soil. Different plant species (cotton, ryegrass, tall fescue and alfalfa), the addition of fertilizer, different concentrations of total petroleum hydrocarbons (TPH) in the soil, bioaugmentation with effective microbial agents (EMA) and plant growth-promoting rhizobacteria (PGPR) and remediation time were tested as influencing factors during the bioremediation process of TPH. The results show that the remediation process can be enhanced by different plant species. The order of effectiveness of the plants was the following: tall fescue > ryegrass > alfalfa > cotton. The degradation rate of TPH increased with increased fertilizer addition, and a moderate urea level of 20 g N (Nitrogen)/m2 was best for both plant growth and TPH remediation. A high TPH content is toxic to plant growth and inhibits the degradation of petroleum hydrocarbons. The results showed that a 5% TPH content gave the best degradation in soil planted with ryegrass. Bioaugmentation with different bacteria and PGPR yielded the following results for TPH degradation: cotton+EMA+PGPR > cotton+EMA > cotton+PGPR > cotton > control. Rapid degradation of TPH was found at the initial period of remediation caused by the activity of microorganisms. A continuous increase of degradation rate was found during the 30–90 days period followed by a slow increase during the 90–150 days period. These results suggest that rhizoremediation can be enhanced with the proper control of different influencing factors that affect both plant growth and microbial activity in the rhizosphere environment.


Sign in / Sign up

Export Citation Format

Share Document