Fatigue life in conditions of composite stress state of elements reclaimed by build-up welding Dziubinski, J. and Czuchryj, J. Proc. 4th Int. Conf. on Biaxial/Multiaxial Fatigue II, St. Germain en Laye, France, 31 May–3 June 1994, pp. 281–291

1996 ◽  
Vol 18 (8) ◽  
pp. 604
2019 ◽  
Vol 42 (11) ◽  
pp. 2558-2578
Author(s):  
Bingfeng Zhao ◽  
Liyang Xie ◽  
Jiaxin Song ◽  
Zhiqiang Zhao ◽  
Fuyou Fan ◽  
...  

2019 ◽  
Vol 795 ◽  
pp. 60-65
Author(s):  
Shunsuke Saito ◽  
Fumio Ogawa ◽  
Takamoto Itoh

Multiaxial fatigue tests consisting of push-pull loading and cyclic inner pressure were carried out using hollow cylinder specimens of type 430 stainless and type 316 stainless steels at room temperature. 7 types of cyclic loading paths were employed by combining axial and hoop stresses: a Pull, an Inner-pressure, a Push-pull, an Equi-biaxial, a Square-shape, a LT-shape and a LC-shape. Fatigue lives vary depending on the loading path when those were evaluated by the maximum Mises’ equivalent stress on inner surface of the specimen. The fatigue lives of both the steels showed a similar tendency although some Pull tests take longer fatigue life when cracks initiated from inside surface of the specimen. This study investigated the crack initiation and propagation behaviors as well as the initiation of oil leakage to prove the behavior and discusses life evaluation for two steels under wide ranged biaxial stress state, too.


2014 ◽  
Vol 945-949 ◽  
pp. 1150-1154
Author(s):  
Xiao Hua Yang ◽  
Xue Jun Liu ◽  
Zhao Hu

The traditional stress severity factor (SSF) approach was applied to analyze the life of aircraft multi-fastener joint. 3-D model was established under simulated state of practical assembling using CATIA, and then the model was imported into ABAQUS to analyze the detail stress state of aircraft multi-fastener joint. The life of aircraft multi-fastener joint was estimated by amending the SSF method. The example shows that the fatigue life by the approach is closer to the experimental result.


2011 ◽  
Vol 199-200 ◽  
pp. 463-469
Author(s):  
Qing Xin Ding ◽  
Ying Cheng Tian ◽  
Juan Chen ◽  
Jian Wen Chen ◽  
Kun Liang Hui ◽  
...  

Fatigue is one of the most common failure mode in hydraulic excavator boom. To find the most fatigue dangerous operating state of boom and effectively improve the life of the structure, a new method is proposed for the estimation of fatigue life under all operation states. In the case of unknown the history of loading, firstly find out the hinged support force under all boom poses, then calculate the stress of every point of the boom under the actions of each group hinged support force via finite element method, and finally simulate all operating states through the poses combination, conducts analysis of multiaxial fatigue life in the maximum principal stress as the nominal stress, calculates the life and the most dangerous operating state in all points, and compares to obtain the most dangerous position and the life of the boom. The results of contrast analysis showed that: the most dangerous zone of the excavator boom calculated by the life estimation method of all operating states coincide with the actual destruction situation. The life of the structure can be greatly improved after a simple reasonable improvement of the parts.


2018 ◽  
Vol 165 ◽  
pp. 16007
Author(s):  
Martin Garcia ◽  
Claudio A. Pereira Baptista ◽  
Alain Nussbaumer

In this study, the multiaxial fatigue strength of full-scale transversal attachment is assessed and compared to original experimental results and others found in the literature. Mild strength S235JR steel is used and an exploratory investigation on the use of high strength S690QL steel and the effect of non-proportional loading is presented. The study focuses on non-load carrying fillet welds as commonly used in bridge design and more generally between main girders and struts. The experimental program includes 33 uniaxial and multiaxial fatigue tests and was partially carried out on a new multiaxial setup that allows proportional and non-proportional tests in a typical welded detail. The fatigue life is then compared with estimations obtained from local approaches with the help of 3D finite element models. The multiaxial fatigue life assessment with some of the well-known local approaches is shown to be suited to the analysis under multiaxial stress states. The accuracy of each models and approaches is compared to the experimental values considering all the previously cited parameters.


Sign in / Sign up

Export Citation Format

Share Document