In vitro surface characterization of a biological patch fixed with a naturally occurring crosslinking agent

Biomaterials ◽  
2000 ◽  
Vol 21 (13) ◽  
pp. 1353-1362 ◽  
Author(s):  
H Sung

1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.



Author(s):  
Michael E. Stender ◽  
Christian R. Flores ◽  
Kristin J. Dills ◽  
Gregory M. Williams ◽  
Kevin M. Stewart ◽  
...  

Articular cartilage (AC) is a load bearing material that provides a low friction wear resistant interface in synovial joints. Naturally-occurring and stimulated intrinsic repair of damaged AC is ineffective. Thus, there is a desire to engineer effective replacement tissue that could be used for AC repair. Previous studies [1] have shown that culture of immature cartilage with medium including TGF-β1 will result in a more mature tissue than culture with IGF-1. Detailed characterization of tissue mechanical properties would be helpful for development of cartilage growth models [2].



2008 ◽  
Vol 76 (12) ◽  
pp. 5883-5891 ◽  
Author(s):  
Angie E. Garcia ◽  
George Ösapay ◽  
Patti A. Tran ◽  
Jun Yuan ◽  
Michael E. Selsted

ABSTRACT θ-Defensins are macrocyclic antimicrobial peptides that were previously isolated from leukocytes of a single species, the rhesus macaque. We now report the characterization of baboon θ-defensins (BTDs) expressed in bone marrow and peripheral blood leukocytes. Four cDNAs encoding θ-defensin precursors were characterized, allowing for the prediction of 10 theoretical θ-defensins (BTD-1 to BTD-10) produced by binary, head-to-tail splicing of nonapeptides excised from paired precursors. Five of the predicted θ-defensins were purified from baboon leukocytes, and synthetic versions of each were prepared. Anti-θ-defensin antibody localized the peptides in circulating neutrophils and monocytes and in immature and mature myeloid elements in bone marrow. Each of the BTDs possessed antimicrobial activity against bacterial and fungal test organisms in vitro. Peptide activities varied markedly despite a high degree of sequence conservation among the θ-defensins tested. Thus, baboons express numerous θ-defensins which appear to differentially contribute to host defense against diverse pathogens.





2019 ◽  
Vol 1 (3) ◽  
pp. 112-123
Author(s):  
Rohith Kumar R. ◽  
Sangeetha Ashok Kumar ◽  
K. Periyasami Bhuvana

The present study endeavors in the preparation and characterization of semi crystalline 45S5 bioglass (BG) (SiO2-CaO-P2O5) through sol gel process. Dry press mold technique was used in the preparation porous BG tablets to examine the bioactivity through invitro studies. The synthesized BG powder was subjected to structural, morphological and mechanical characterization and the bioactivity was examined in vitro by immersing the BG tablet in the Simulated Body Fluid (SBF) solution. XRD pattern and the SEM micrographs revealed the semi crystalline nature of BG with spherical morphology. The elemental analysis confirms the presence of vital constituents required for Bone regeneration (Calcium, Phosphorous, Silica, and Sodium). The surface characterization of BG tablet reveals the pores structure of average pore size of 240nm which contributed to the high surface activity resulting in formation of carbonated hydroxy apatite (HCAP) when immersed in SBF. The disintegration studies denoted the stabilization period was after 48 of immersion of BG tablets in SBF solution. The compressive strength measurement of the tablet also reveals the higher mechanical stability.





ACS Omega ◽  
2017 ◽  
Vol 2 (8) ◽  
pp. 4991-4999 ◽  
Author(s):  
Patricia Wennerstrand ◽  
Annica Blissing ◽  
Lars-Göran Mårtensson


Sign in / Sign up

Export Citation Format

Share Document