Negative transcriptional regulation of virulence and oncogenes of the Ti plasmid by Ros bearing a conserved C2H2-zinc finger motif

Plasmid ◽  
2002 ◽  
Vol 48 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Clarence I Kado
2019 ◽  
Vol 52 (1) ◽  
pp. 84-90 ◽  
Author(s):  
Zhiwei Zhang ◽  
Chunyan Wu ◽  
Tao Lin ◽  
Yuechan Chen

Abstract KLF7, one of candidate genes in neurotherapy and metabolic syndrome, has been studied in adipogenesis of mammalian species and birds. However, the effect of the third C2H2 zinc finger of KLF7 for its transcriptional regulation in adipogenesis has not been well understood. Here, the wild-type chicken KLF7 (KLF7) overexpression plasmid, pCMV-myc-KLF7, and two plasmids of chicken KLF7 mutants, i.e. pCMV-myc-KLF7m1 with half of the third zinc finger (KLF7m1) and pCMV-myc-KLF7m2 without the third zinc finger (KLF7m2), were constructed. Luciferase reporter assay in DF1 cells showed that the effect of chicken KLF7 overexpression on the promoter activity of LPL was greater than those of KLF7m1 and KLF7m2 (P < 0.05). There was no significant difference among the overexpression of KLF7, KLF7m1 and KLF7m2 on the promoter activities of FASN, C/EBPα and FABP4 (P > 0.05). Additionally, the effects of KLF7, KLF7m1 and KLF7m2 overexpression on the promoter activity of PPARγ were different. KLF7 overexpression had no significant effect on the PPARγ promoter activity (P > 0.05), KLF7m1 overexpression suppressed PPARγ promoter activity (P < 0.05), while KLF7m2 overexpression facilitated the promoter activity of PPARγ (P < 0.05), consistent with the results of western blot analysis. Our results suggested that the third zinc finger of chicken KLF7 may play a role in its transcriptional regulation of LPL and PPARγ but has no effect on its regulation of C/EBPα, FASN and FABP4. The third zinc finger of KLF7 might be a target for the treatment of metabolic disorder in chicken.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Kazuhiro Suzuki ◽  
Kosuke Sako ◽  
Kazuhiro Akiyama ◽  
Michitaka Isoda ◽  
Chiharu Senoo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Guoliang Han ◽  
Yuxia Li ◽  
Ziqi Qiao ◽  
Chengfeng Wang ◽  
Yang Zhao ◽  
...  

Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.


1994 ◽  
Vol 91 (22) ◽  
pp. 10655-10659 ◽  
Author(s):  
R. Feuerstein ◽  
X. Wang ◽  
D. Song ◽  
N. E. Cooke ◽  
S. A. Liebhaber

Sign in / Sign up

Export Citation Format

Share Document