Complement synthesis by human primary hepatocytes: impact of culture conditions and comparison to liver cell lines HEPG2 and chang liver

1998 ◽  
Vol 35 (6-7) ◽  
pp. 362
Author(s):  
Heiko Vogel ◽  
Walter J. Hofmann ◽  
Michael Kirschfink
2020 ◽  
Vol 61 (11) ◽  
pp. 1524-1535
Author(s):  
Stephanie J. Shiffka ◽  
Jace W. Jones ◽  
Linhao Li ◽  
Ann M. Farese ◽  
Thomas J. MacVittie ◽  
...  

Bile acids (BAs) have been established as ubiquitous regulatory molecules implicated in a large variety of healthy and pathological processes. However, the scope of BA heterogeneity is often underrepresented in current literature. This is due in part to inadequate detection methods, which fail to distinguish the individual constituents of the BA pool. Thus, the primary aim of this study was to develop a method that would allow the simultaneous analysis of specific C24 BA species, and to apply that method to biological systems of interest. Herein, we describe the generation and validation of an LC-MS/MS assay for quantification of numerous BAs in a variety of cell systems and relevant biofluids and tissue. These studies included the first baseline level assessment for planar BAs, including allocholic acid, in cell lines, biofluids, and tissue in a nonhuman primate (NHP) laboratory animal, Macaca mulatta, in healthy conditions. These results indicate that immortalized cell lines make poor models for the study of BA synthesis and metabolism, whereas human primary hepatocytes represent a promising alternative model system. We also characterized the BA pool of M. mulatta in detail. Our results support the use of NHP models for the study of BA metabolism and pathology in lieu of murine models. Moreover, the method developed here can be applied to the study of common and planar C24 BA species in other systems.


2015 ◽  
Vol 31 (2) ◽  
pp. 83 ◽  
Author(s):  
S Faez ◽  
H Muhajir ◽  
I Amin ◽  
A Zainah

The effect of oil palm (Elaeis guineensis) fruit aqueous extract (OPF) on glucose uptake activity of three different cell lines was investigated. The cell lines were incubated with different concentrations of OPF to evaluate the stimulatory effect of OPF towards glucose uptake activity of L6 myotubes, 3T3F442A adipocytes and Chang liver cell line. The glucose uptake activities of all tested cells were enhanced in the presence of OPF extract (basal condition). Nevertheless in combination of OPF extract and 100 nM insulin, the glucose uptake activity was only significantly enhanced in L6 myotubes and 3T3F442A adipocytes cell lines. The extracts enhanced the glucose uptake into cells through either insulin-mimetic or insulin-sensitizing property or combination of these two properties. It can be suggested that the OPF extract exerts its antihyperglycemic action partly by mediated glucose uptake into the glucose-responsive disposal cells, muscle, adipose and liver.


2007 ◽  
Vol 292 (1) ◽  
pp. G402-G408 ◽  
Author(s):  
Elangovan Gopal ◽  
Seiji Miyauchi ◽  
Pamela M. Martin ◽  
Sudha Ananth ◽  
Sonne R. Srinivas ◽  
...  

In this article, we report on the expression and function of a Na+-coupled transporter for citrate, NaCT, in human and rat liver cell lines and in primary hepatocytes from the rat liver. We also describe the polarized expression of this transporter in human and rat livers. Citrate uptake in human liver cell lines HepG2 and Huh-7 was obligatorily dependent on Na+. The uptake system showed a preference for citrate over other intermediates of the citric acid cycle and exhibited a Michaelis constant of ∼6 mM for citrate. The transport activity was stimulated by Li+, and the activation was associated with a marked increase in substrate affinity. Citrate uptake in rat liver cell line MH1C1 was also Na+ dependent and showed a preference for citrate. The Michaelis constant for citrate was ∼10 μM. The transport activity was inhibited by Li+. Primary hepatocytes from the rat liver also showed robust activity for Na+-coupled citrate uptake, with functional features similar to those described in the rat liver cell line. Immunolabeling with a specific anti-NaCT antibody showed exclusive expression of the transporter in the sinusoidal membrane of hepatocytes in human and rat livers. This constitutes the first report on the expression and function of NaCT in liver cells.


Chemosensors ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 139
Author(s):  
Wiktoria Blaszczak ◽  
Zhengchu Tan ◽  
Pawel Swietach

A fundamental phenotype of cancer cells is their metabolic profile, which is routinely described in terms of glycolytic and respiratory rates. Various devices and protocols have been designed to quantify glycolysis and respiration from the rates of acid production and oxygen utilization, respectively, but many of these approaches have limitations, including concerns about their cost-ineffectiveness, inadequate normalization procedures, or short probing time-frames. As a result, many methods for measuring metabolism are incompatible with cell culture conditions, particularly in the context of high-throughput applications. Here, we present a simple plate-based approach for real-time measurements of acid production and oxygen depletion under typical culture conditions that enable metabolic monitoring for extended periods of time. Using this approach, it is possible to calculate metabolic fluxes and, uniquely, describe the system at steady-state. By controlling the conditions with respect to pH buffering, O2 diffusion, medium volume, and cell numbers, our workflow can accurately describe the metabolic phenotype of cells in terms of molar fluxes. This direct measure of glycolysis and respiration is conducive for between-runs and even between-laboratory comparisons. To illustrate the utility of this approach, we characterize the phenotype of pancreatic ductal adenocarcinoma cell lines and measure their response to a switch of metabolic substrate and the presence of metabolic inhibitors. In summary, the method can deliver a robust appraisal of metabolism in cell lines, with applications in drug screening and in quantitative studies of metabolic regulation.


2019 ◽  
Vol 316 (4) ◽  
pp. E578-E589 ◽  
Author(s):  
Shilpa R. Nagarajan ◽  
Moumita Paul-Heng ◽  
James R. Krycer ◽  
Daniel J. Fazakerley ◽  
Alexandra F. Sharland ◽  
...  

The liver is a critical tissue for maintaining glucose, fatty acid, and cholesterol homeostasis. Primary hepatocytes represent the gold standard for studying the mechanisms controlling hepatic glucose, lipid, and cholesterol metabolism in vitro. However, access to primary hepatocytes can be limiting, and therefore, other immortalized hepatocyte models are commonly used. Here, we describe substrate metabolism of cultured AML12, IHH, and PH5CH8 cells, hepatocellular carcinoma-derived HepG2s, and primary mouse hepatocytes (PMH) to identify which of these cell lines most accurately phenocopy PMH basal and insulin-stimulated metabolism. Insulin-stimulated glucose metabolism in PH5CH8 cells, and to a lesser extent AML12 cells, responded most similarly to PMH. Notably, glucose incorporation in HepG2 cells were 14-fold greater than PMH. The differences in glucose metabolic activity were not explained by differential protein expression of key regulators of these pathways, for example glycogen synthase and glycogen content. In contrast, fatty acid metabolism in IHH cells was the closest to PMHs, yet insulin-responsive fatty acid metabolism in AML12 and HepG2 cells was most similar to PMH. Finally, incorporation of acetate into intracellular-free cholesterol was comparable for all cells to PMH; however, insulin-stimulated glucose conversion into lipids and the incorporation of acetate into intracellular cholesterol esters were strikingly different between PMHs and all tested cell lines. In general, AML12 cells most closely phenocopied PMH in vitro energy metabolism. However, the cell line most representative of PMHs differed depending on the mode of metabolism being investigated, and so careful consideration is needed in model selection.


Sign in / Sign up

Export Citation Format

Share Document