Chapter 11 Multiple sources of information influence time-to-contact judgments: Do heuristics accommodate limits in sensory and cognitive processes?

Author(s):  
Patricia R. DeLucia
2005 ◽  
Vol 58 (5) ◽  
pp. 865-886 ◽  
Author(s):  
Patricia R. DeLucia

Previous studies indicate that non-tau sources of depth information, such as pictorial depth cues, can influence judgements of time to contact (TTC). The effect of relative size on such judgements, the size-arrival effect, is particularly robust. However, earlier studies of the size-arrival effect did not include binocular disparity or familiar size information. The effects of these cues on relative TTC judgements were measured. Results suggested that disparity can eliminate the size-arrival effect but that the amount of disparity needed to do so is greater than typical stereoacuity thresholds. In contrast, familiar size eliminated the size-arrival effect even when disparity information was not available. Furthermore, disparity contributed more to performance when familiar size was present than when it was absent. Consistent with previous studies, TTC judgements were influenced by multiple sources of information. The present results suggested further that familiar size is one such source of information and that familiar size moderates the influence of binocular disparity information.


2022 ◽  
pp. 757-774
Author(s):  
Roman Zahariev Zahariev ◽  
Nina Valchkova

Collaborative robots (Cobots) are described from the point of view of the cognitive processes underlying the perception and emotional expression of learners based on individual human interacting with non-humanoid robots. The chapter describes a project that is aimed at the development and prototyping of mobile cognitive robotic system designed for service and assistance to people with disabilities. In creating this robot called “AnRI” (anthropomorphic robot intelligent) the experience from building the previous one was used, and it was used in the project Conduct Research into the Adoption of Robotic Technologies in Special Education by Children, Young People, and Pedagogical Specialists. It is described as a device of the robot and realization of cognitive processes to integrate knowledge-related information from sensors, actuators, and multiple sources of information vital to the process of serving people with disabilities.


Author(s):  
Roman Zahariev Zahariev ◽  
Nina Valchkova

Collaborative robots (Cobots) are described from the point of view of the cognitive processes underlying the perception and emotional expression of learners based on individual human interacting with non-humanoid robots. The chapter describes a project that is aimed at the development and prototyping of mobile cognitive robotic system designed for service and assistance to people with disabilities. In creating this robot called “AnRI” (anthropomorphic robot intelligent) the experience from building the previous one was used, and it was used in the project Conduct Research into the Adoption of Robotic Technologies in Special Education by Children, Young People, and Pedagogical Specialists. It is described as a device of the robot and realization of cognitive processes to integrate knowledge-related information from sensors, actuators, and multiple sources of information vital to the process of serving people with disabilities.


2006 ◽  
Vol 46 (12) ◽  
pp. 1946-1958 ◽  
Author(s):  
Nam-Gyoon Kim ◽  
Michael J. Grocki

Perception ◽  
1993 ◽  
Vol 22 (5) ◽  
pp. 549-563 ◽  
Author(s):  
Herbert Heuer

Apparent constant-velocity approaches of an outline circle were generated by changing the size and/or the lateral separation of dichoptically presented circles at a physically constant distance from subjects. The lateral separation of the circles defines target vergence which corresponds proximally to combinations of ocular vergence and (absolute) retinal disparity. In the first experiment, estimates of time to contact were found to depend both on changing size and on changing target vergence; in the case of conflicting information, changing size turned out to be the more powerful stimulus. In the second experiment, the size of the stimulus object was varied. The relatively stronger influence of changing size on estimates of time to contact was again found for the larger stimulus objects, but for the smaller stimulus objects changing target vergence became more powerful. The results of both experiments show that estimates of time to contact are not uniquely determined by changing size, as seems to be implied by some tests of the so-called ‘tau hypothesis’, but that they are based on multiple sources of information that have situationally specific effects on the estimates.


2019 ◽  
Vol 40 (03) ◽  
pp. 151-161 ◽  
Author(s):  
Sebastian Doeltgen ◽  
Stacie Attrill ◽  
Joanne Murray

AbstractProficient clinical reasoning is a critical skill in high-quality, evidence-based management of swallowing impairment (dysphagia). Clinical reasoning in this area of practice is a cognitively complex process, as it requires synthesis of multiple sources of information that are generated during a thorough, evidence-based assessment process and which are moderated by the patient's individual situations, including their social and demographic circumstances, comorbidities, or other health concerns. A growing body of health and medical literature demonstrates that clinical reasoning skills develop with increasing exposure to clinical cases and that the approaches to clinical reasoning differ between novices and experts. It appears that it is not the amount of knowledge held, but the way it is used, that distinguishes a novice from an experienced clinician. In this article, we review the roles of explicit and implicit processing as well as illness scripts in clinical decision making across the continuum of medical expertise and discuss how they relate to the clinical management of swallowing impairment. We also reflect on how this literature may inform educational curricula that support SLP students in developing preclinical reasoning skills that facilitate their transition to early clinical practice. Specifically, we discuss the role of case-based curricula to assist students to develop a meta-cognitive awareness of the different approaches to clinical reasoning, their own capabilities and preferences, and how and when to apply these in dysphagia management practice.


2021 ◽  
Vol 13 (14) ◽  
pp. 7908
Author(s):  
Lucía Mejía-Dorantes ◽  
Lídia Montero ◽  
Jaume Barceló

The spatial arrangement of a metropolis is of utmost importance to carry out daily activities, which are constrained by space and time. Accessibility is not only shaped by the spatial and temporal dimension, but it is also defined by individual characteristics, such as gender, impairments, or socioeconomic characteristics of the citizens living or commuting in this area. This study analyzes mobility trends and patterns in the metropolitan area of Barcelona before and after the COVID-19 pandemic outbreak, with special emphasis on gender and equality. The study draws on multiple sources of information; however, two main datasets are analyzed: two traditional travel surveys from the transport metropolitan area of Barcelona and two coming from smartphone data. The results show that gender plays a relevant role when analyzing mobility patterns, as already highlighted in other studies, but, after the pandemic outbreak, some population groups were more likely to change their mobility patterns, for example, highly educated population groups and those with higher income. This study also highlights that e-activities may shape new mobility patterns and living conditions for some population segments, but some activities cannot be replaced by IT technologies. For all these reasons, city and transport planning should foster sustainable development policies, which will provide the maximum benefit for society.


2021 ◽  
Vol 9 ◽  
Author(s):  
Debanjan Banerjee ◽  
K. S. Meena

The Coronavirus disease 2019 (COVID-19) pandemic has emerged as a significant and global public health crisis. Besides the rising number of cases and fatalities, the outbreak has also affected economies, employment and policies alike. As billions are being isolated at their homes to contain the infection, the uncertainty gives rise to mass hysteria and panic. Amidst this, there has been a hidden epidemic of “information” that makes COVID-19 stand out as a “digital infodemic” from the earlier outbreaks. Repeated and detailed content about the virus, geographical statistics, and multiple sources of information can all lead to chronic stress and confusion at times of crisis. Added to this is the plethora of misinformation, rumor and conspiracy theories circulating every day. With increased digitalization, media penetration has increased with a more significant number of people aiding in the “information pollution.” In this article, we glance at the unique evolution of COVID-19 as an “infodemic” in the hands of social media and the impact it had on its spread and public reaction. We then look at the ways forward in which the role of social media (as well as other digital platforms) can be integrated into social and public health, for a better symbiosis, “digital balance” and pandemic preparedness for the ongoing crisis and the future.


2021 ◽  
Vol 15 ◽  
Author(s):  
Julian L. Amengual ◽  
Suliann Ben Hamed

Persistent activity has been observed in the prefrontal cortex (PFC), in particular during the delay periods of visual attention tasks. Classical approaches based on the average activity over multiple trials have revealed that such an activity encodes the information about the attentional instruction provided in such tasks. However, single-trial approaches have shown that activity in this area is rather sparse than persistent and highly heterogeneous not only within the trials but also between the different trials. Thus, this observation raised the question of how persistent the actually persistent attention-related prefrontal activity is and how it contributes to spatial attention. In this paper, we review recent evidence of precisely deconstructing the persistence of the neural activity in the PFC in the context of attention orienting. The inclusion of machine-learning methods for decoding the information reveals that attention orienting is a highly dynamic process, possessing intrinsic oscillatory dynamics working at multiple timescales spanning from milliseconds to minutes. Dimensionality reduction methods further show that this persistent activity dynamically incorporates multiple sources of information. This novel framework reflects a high complexity in the neural representation of the attention-related information in the PFC, and how its computational organization predicts behavior.


Sign in / Sign up

Export Citation Format

Share Document