Vitrinite anisotropy resulting from simple shear experiments at high temperature and high confining pressure

1997 ◽  
Vol 33 (2) ◽  
pp. 153-168 ◽  
Author(s):  
J.V. Ross ◽  
R.M. Bustin
2019 ◽  
Vol 23 (3 Part A) ◽  
pp. 1521-1527
Author(s):  
Hui-Jun Lu ◽  
Dong-Feng Hu ◽  
Ru Zhang ◽  
Cun-Bao Li ◽  
Jun Wang ◽  
...  

Triaxial compression tests are conducted on Longmaxi shale under high temperature and high confining pressure condition corresponding to a depth of 3000 m for two typical bedding plane orientations (0? and 90?). It is found that the crack initiation stresses and crack damage stresses of the Longmaxi shale specimens with different vein orientations are different, reflecting that the inclination of the bedding plane has a non-negligible influence on the microcrack initiation and propagation. In addition, the brittleness index of the Longmaxi shale with a bedding plane orientation of 90? is greater than that with an orientation of 0?, which confirmed that the brittleness index is related to the structural orientation under a high temperature and high confining pressure condition. Concerning the failure patterns, both the shear and tensile fracture modes has been observed.


2021 ◽  
Author(s):  
Ziyang Zhou ◽  
Hitoshi MIKADA ◽  
Junichi TAKEKAWA ◽  
Shibo Xu

Abstract With the increasing attention to clean and economical energy resources, geothermal energy and enhanced geothermal systems (EGS) have gained much importance. For the efficient development of deep geothermal reservoirs, it is crucial to understand the mechanical behavior of reservoir rock and its interaction with injected fluid under high temperature and high confining pressure environments. In the present study, we develop a novel numerical scheme based on the distinct element method (DEM) to simulate the failure behavior of rock by considering the influence of thermal stress cracks and high confining pressure for EGS. We validated the proposing method by comparing our numerical results with experimental laboratory results of uniaxial compression tests under various temperatures and biaxial compression tests under different confining pressure regarding failure patterns and stress-strain curves. We then apply the developed scheme to the hydraulic fracturing simulations under various temperatures, confining pressure, and injection fluid conditions. Our numerical results indicate that the number of hydraulic cracks is proportional to the temperature. At a high temperature and low confining pressure environment, a complex crack network with large crack width can be observed, whereas the generation of the micro cracks is suppressed in high confining pressure conditions. In addition, high-viscosity injection fluid tends to induce more hydraulic fractures. Since the fracture network in the geothermal reservoir is an essential factor for the efficient production of geothermal energy, the combination of the above factors should be considered in hydraulic fracturing treatment in EGS.


2021 ◽  
Vol 25 (6 Part B) ◽  
pp. 4527-4535
Author(s):  
Sheng-Cheng Wang ◽  
Ya-Nan Gao ◽  
Lan-Ying Huang ◽  
Hai-Jian Li ◽  
Shan-Jie Su

High temperature nitrogen, injection into coal seams is supposed to improve the per?meability and thus maintain the safety of underground mining. A novel triaxial appa?ratus is recently developed, aiming at providing the effective method to evaluate the effect of high temperature nitrogen injection. The main feature of this novel appara?tus is its high confining pressure, gas injection with high pressure as well as the high temperature. This new device can be either used for natural coal samples (e.g. intact or fractured) or the synthetic coal samples. A series of leakage tests were conducted to verify the feasibility of this instrument, the results of which have confirmed that the maximum pressure (i.e. 10 MPa) can be reached. In addition, the high temperature and pressure of nitrogen gas can also be sustain at the requested level. Based on the preliminary tests on the instrument, a large amount of tests were carried out to eval?uate the effect of nitrogen injection in enhancing the permeability of coking coal from the Pingdingshan coalfield, China, and the influence of high temperature nitrogen injection on mechanical parameters of coal was obtained.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Mingwei Kong ◽  
Zhaopeng Zhang ◽  
Chunyan Zhao ◽  
Huasheng Chen ◽  
Xinfang Ma ◽  
...  

The mechanical properties of the high-temperature and high-pressure reservoirs in the southern margin of Junggar Basin have not been clearly understood, which correspondingly results in uncertainties when predicting the breakdown pressure. To address this issue, firstly, rock mechanical experiments under high temperature, high confining pressure, and high pore pressure were carried out. Secondly, empirical formulas related to the transformation of dynamic and static mechanical parameters in the regional strata were proposed. Finally, the existing prediction model for the formation breakdown pressure was improved by taking the wellbore seepage and thermal stress into consideration. Results show that under the reservoir condition of high temperature and high pressure, the rock sample tends to form closed shear cracks. High temperature causes thermal damages and the reduction of the compressive strength and elastic modulus, while the combined effects of high confining pressure and pore pressure enhance the compressive strength and plasticity of the rock sample simultaneously. Based on the correlation analysis, it is found that the static elastic modulus is linearly related to the dynamic value, while static Poisson’s ratio is a quadratic function of the dynamic value. These fitting functions can be used to obtain the profiles of static elastic modulus and Poisson’s ratio based on their dynamic values from the logging interpretation. Besides, the improved prediction model for the rock breakdown pressure can yield more accurate results indicated by the error less than 2%. Therefore, the proposed breakdown pressure prediction model in this study can provide theoretical guidance in the selection of fracturing truck groups and the design of the pumping schedule for high-temperature and high-pressure reservoirs.


1997 ◽  
Vol 12 (1) ◽  
pp. 21-27 ◽  
Author(s):  
D.-W. Yuan ◽  
M. D. Aesoph ◽  
J. Kajuch

With the growing potential for use of Bi-2212 powders in high temperature superconducting applications, it is important to understand the processing characteristics of the material. To meet this need, the present work established the relationship between confining pressure and green density for powders of different particle sizes and morphologies. Mechanical properties, including elastic and plastic behavior, of the resulting green compacts were also measured as a function of relative density. Particle size and size distribution are shown to have a significant impact on the properties of interest. The implications of such findings are discussed with respect to the powder-in-tube process for making high temperature superconducting wire and tape.


2021 ◽  
Author(s):  
Paraskevi Io Ioannidi ◽  
Laetitia Le Pourhiet ◽  
Philippe Agard ◽  
Samuel Angiboust ◽  
Onno Oncken

<p>Exhumed subduction shear zones often exhibit block-in-matrix structures comprising strong clasts within a weak matrix (mélanges). Inspired by such observations, we create synthetic models with different proportions of strong clasts and compare them to natural mélange outcrops. We use 2D Finite Element visco-plastic numerical simulations in simple shear kinematic conditions and we determine the effective rheology of a mélange with basaltic blocks embedded within a wet quartzitic matrix. Our models and their structures are scale-independent; this allows for upscaling published field geometries to km-scale models, compatible with large-scale far-field observations. By varying confining pressure, temperature and strain rate we evaluate effective rheological estimates for a natural subduction interface. Deformation and strain localization are affected by the block-in-matrix ratio. In models where both materials deform viscously, the effective dislocation creep parameters (A, n, and Q) vary between the values of the strong and the weak phase. Approaching the frictional-viscous transition, the mélange bulk rheology is effectively viscous creep but in the small scale parts of the blocks are frictional, leading to higher stresses. This results in an effective value of the stress exponent, n, greater than that of both pure phases, as well as an effective viscosity lower than the weak phase. Our effective rheology parameters may be used in large scale geodynamic models, as a proxy for a heterogeneous subduction interface, if an appropriate evolution law for the block concentration of a mélange is given.</p>


Sign in / Sign up

Export Citation Format

Share Document