2002 ◽  
Vol 728 ◽  
Author(s):  
Junji Tominaga ◽  
Dorothea Büchel ◽  
Christophe Mihalcea ◽  
Takayuki Shima ◽  
Toshio Fukaya

AbstractRF-magnetron sputtered thin films of silver oxide (AgOx) were recently applied to ultra-high density optical data storage. It has been elucidated that the AgOx film sandwiched by protection layers shows very attractive characteristics in strong light-scattering, local plasmon generation and super-resolution by focussing a laser beam on it. Especially, the combination with an active recording film (optical phase change or magneto-optical) used in the currently recordable optical disks improves the storage density and overcomes the diffraction limit. In this paper, we describe the basic characteristics of nano-scale light scattering centers generated in the AgOx films and the interaction with ultra-high density recorded mark patterns in a near-field region. In addition, we provide the structural transition of the AgOx film by thermal and laser annealing treatment.


2021 ◽  
Author(s):  
Jian Zhu ◽  
Shu-min Zhao

Abstract The strong light scattering from SPR has received an extraordinary attention due to the useful applications in photodetectors, cell and biomedical imaging. However, the applications using light scattering require a high scattering cross-section along with low absorption losses near the resonance wavelength. In this paper, effective plasmonic scattering of three-layered Au-Ag bimetallic nanoshells with a dielectric separate layer has been studied using the quasi-static approximation of classical electrodynamics. Because of the surface plasmon resonance (SPR)-induced intense light absorption, the effective scattering intensity is much weaker than that of scattering cross section. However, the effective scattering intensity could be improved by tuning the geometric dimension and local dielectric environment of the nanostructure. It has been found that the greatest effective scattering takes place when the outer Ag nanoshell has a thick thickness or the dielectric separate layer has a small dielectric constant. The effective scattering also depends on the inner Au sphere radius and outer surrounding dielectric constant. Because of the mode transformation of the SPR, the effective scattering could also be greatly improved when the inner Au sphere has a very small or large size. However, the effective scattering intensity changes non-monotonously as the surrounding dielectric constant increases. The greatest effective scattering could be obtained when the surrounding dielectric constant has an intermediate value. This tunable effective plasmonic scattering of Au@Ag three-layered nanoshells presents a potential for design and fabrication of plasmonic optical nanodevice based on resonance light scattering.


1994 ◽  
Vol 346 ◽  
Author(s):  
D.W. Hua ◽  
J. Anderson ◽  
S. Hæreid ◽  
D.M. Smith ◽  
G. Beaucage

ABSTRACTSilica aerogels have numerous properties which suggest applications such as ultra high efficiency thermal insulation. These properties relate directly to the aerogel's pore size distribution. The micro and meso pore size ranges can be investigated by normal small angle x-ray scattering and possibly, nitrogen adsorption. However, the measurement of larger pores (> 250 Å) is more difficult. Due to their limited mechanical strength, mercury porosimetry and nitrogen condensation can disrupt the gel structure and electron microscopy provides only limited large scale structure information. The use of small angle light scattering techniques seems to have promise, the only hurdle is that aerogels exhibit significant multiple scattering. This can be avoided if one observes the gels in the wet stage since the structure of the aerogel should be very similar to the wet gel (as the result of supercritical drying). Thus, if one can match the refractive index, the morphology can be probed. The combination of certain alcoholic solvents fit this index matching criteria. Preliminary results for the gel network (micron range) and primary particle structure (nanometer) are reported by using small angle light scattering and ultra-small angle x-ray scattering. The effects on structure over the length scale range of <1 nm to >5 μπι under different conditions (precursors, pH, etc.) are presented. The change in structure of an aerogel during isostatic compaction to 228 MPa (to simulate drying from wetting solvents) are also discussed.


Coatings ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 13 ◽  
Author(s):  
Wen-Yao Huang ◽  
Tung-Li Hsieh

In this study, we prepared and analyzed the properties of hill-like hierarchically structured titanium dioxide (TiO2) photoanodes for dye-sensitized solar cells (DSSCs). We expected that the presence of appropriately aggregated TiO2 clusters in the photoanode layer would translate to relatively strong light scattering and dye loading, increasing the photovoltaic efficiency. A detailed light-harvesting study was performed by employing polyvinyl alcohol (PVA) polymers of different molecular weights as binders for the aggregation of the TiO2 nanoparticles (P-25 Degussa). Hence, we obtained a series of TiO2 films, presenting a variety of morphologies. Their reflection, as well as absorbance of light by the attached dye, the amount of dye loading, and the performance of the fabricated DSSC devices were investigated. Our optimized device, with a relatively high dye loading and good light harvesting ability, was able to enhance the short-circuit current (Jsc) in the DSSCs by 23%.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ion Tiginyanu ◽  
Lidia Ghimpu ◽  
Jorit Gröttrup ◽  
Vitalie Postolache ◽  
Matthias Mecklenburg ◽  
...  

2018 ◽  
Vol 90 (1) ◽  
pp. 127-139 ◽  
Author(s):  
Chandana Mandal ◽  
Suraj Donthula ◽  
Rushi Soni ◽  
Massimo Bertino ◽  
Chariklia Sotiriou-Leventis ◽  
...  

1992 ◽  
Vol 289 ◽  
Author(s):  
James E. Martin ◽  
Judy Odinek ◽  
Thomas C. Halsey

AbstractWe report a real-time, two-dimensional light scattering study of the evolution of structure in a concentrated electrorheological fluid during the ‘liquid-solid’ phase transition. We find that after particle chaining along the electric field lines, strong light scattering lobes appear at a finite scattering wavevector q orthogonal to the field lines, and then brighten as they move to q=0. This indicates the existence of an unstable concentration fluctuation that signifies the segregation of chains into columns. In fact, the observed growth kinetics of the characteristic length, as well as the form of the structure factor, are qualitatively similar to two-dimensional spinodal decomposition in a system with a conserved order parameter.


Sign in / Sign up

Export Citation Format

Share Document