Synergy in the Fe-Mo-Sb-O Multiphase System

Author(s):  
L.E. Cadus ◽  
Y.L. Xiong ◽  
F.J. Gotor ◽  
D. Acosta ◽  
J. Naud ◽  
...  
Keyword(s):  
2006 ◽  
Vol 34 (1) ◽  
pp. 239-242
Author(s):  
András Makó ◽  
Barbara Elek
Keyword(s):  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2542
Author(s):  
Karol Ulatowski ◽  
Radosław Jeżak ◽  
Paweł Sobieszuk

(1) The generation of nanobubbles by electrolysis is an interesting method of using electrical energy to form bubble nuclei, effectively creating a multiphase system. For every process, the effectiveness of nanobubble generation by electrolysis depends on various process parameters that impact should be determined. (2) In this work, the electrolytic generation of hydrogen and oxygen bubbles was performed in a self-built setup, in which a Nafion membrane separated two chambers. The generation of bubbles of both gases was investigated using Box–Behnken experimental design. Three independent variables were salt concentration, current density, and electrolysis time, while the dependent variables were Sauter diameters of generated bubbles. An ANOVA analysis and multivariate regression were carried out to propose a statistical and power model of nanobubble size as a process parameter function. (3) The generation of bubbles of hydrogen and oxygen by electrolysis showed that different factors or their combinations determine their size. The results presented in this work proved to be complementary to previous works reported in the literature. (4) The Sauter diameter of bubbles increases with salt concentration and stays constant with increasing current density in investigated range. The proposed correlations allow the Sauter diameters of nanobubbles generated during electrolysis to be predicted.


1997 ◽  
Vol 32 (5) ◽  
pp. 417-422 ◽  
Author(s):  
Murat Elibol ◽  
Ferda Mavituna

1980 ◽  
Vol 102 (2) ◽  
pp. 129-132
Author(s):  
R. B. Emery

Theory and proof are presented here related to fluid pressure control of bulk solids flowability. They are directed toward a quantitative design goal for fluid-solids flow systems. An effort is made to relate multiphase system concept to existing soil mechanics, strength of material and bulk solids flow theory. Gas or liquid interstitial loads often add cumulative effects to the mechanical loads normally considered in bulk solids flow systems. Summation of the mechanical, gas and liquid loads form the basis for multiphase system design. Useful savings in design, construction and maintenance are expected from application of multiphase theory. Quantitative design can, in some cases, provide flow, no-flow, or a controlled combination of flow and no-flow.


2014 ◽  
Vol 15 (5) ◽  
pp. 1237-1265 ◽  
Author(s):  
Remi Abgrall ◽  
Harish Kumar

AbstractThe numerical simulation of non conservative system is a difficult challenge for two reasons at least. The first one is that it is not possible to derive jump relations directly from conservation principles, so that in general, if the model description is non ambiguous for smooth solutions, this is no longer the case for discontinuous solutions. From the numerical view point, this leads to the following situation: if a scheme is stable, its limit for mesh convergence will depend on its dissipative structure. This is well known since at least [1]. In this paper we are interested in the “dual” problem: given a system in non conservative form and consistent jump relations, how can we construct a numerical scheme that will, for mesh convergence, provide limit solutions that are the exact solution of the problem. In order to investigate this problem, we consider a multiphase flow model for which jump relations are known. Our scheme is an hybridation of Glimm scheme and Roe scheme.


Author(s):  
Sabine Matthias-Maser ◽  
Sabine Gruber ◽  
Berit Bogs ◽  
Ruprecht Jaenicke
Keyword(s):  

2001 ◽  
Vol 7 (S2) ◽  
pp. 238-239
Author(s):  
V. Radmilovic ◽  
D. Mitlin ◽  
S. Hinderberger ◽  
U. Dahmen

Moiré patterns are commonly formed in multiphase system when diffracting planes of similar spacing and orientation lead to interference effects. They can be used experimentally to evaluate the stress distribution in materials [1], to analyze orientation relationships and latttice strain in diffraction contrast microscopy, or, combined with the related geometrical phase technique, to analyze displacements in high resolution lattice images [2,3]. The interpretation of moiré fringes is often not straightforward due to the elastic interaction between the crystals at the interface and the dynamical nature of electron diffraction [4]. However, if the two lattices are fully relaxed, or if a small precipitate crystal is embedded in a large matrix, moiré patterns can give a simple and direct measure of orientation and lattice constants. in the present work, the moiré technique has been applied to the quantitative analysis of lath-shaped Ge or Ge-Si precipitates in Al with the aim to determine the composition (the Si:Ge ratio) from the lattice parameter indicated by the moiré fringes.


2020 ◽  
Vol 20 (8) ◽  
pp. 4987-4997 ◽  
Author(s):  
Saly Jaber ◽  
Audrey Lallement ◽  
Martine Sancelme ◽  
Martin Leremboure ◽  
Gilles Mailhot ◽  
...  

Abstract. The sinks of hydrocarbons in the atmosphere are usually described by oxidation reactions in the gas and aqueous (cloud) phases. Previous lab studies suggest that in addition to chemical processes, biodegradation by bacteria might also contribute to the loss of organics in clouds; however, due to the lack of comprehensive data sets on such biodegradation processes, they are not commonly included in atmospheric models. In the current study, we measured the biodegradation rates of phenol and catechol, which are known pollutants, by one of the most active strains selected during our previous screening in clouds (Rhodococcus enclensis). For catechol, biodegradation is about 10 times faster than for phenol. The experimentally derived biodegradation rates are included in a multiphase box model to compare the chemical loss rates of phenol and catechol in both the gas and aqueous phases to their biodegradation rate in the aqueous phase under atmospheric conditions. Model results show that the degradation rates in the aqueous phase by chemical and biological processes for both compounds are similar to each other. During day time, biodegradation of catechol is even predicted to exceed the chemical activity in the aqueous phase and to represent a significant sink (17 %) of total catechol in the atmospheric multiphase system. In general, our results suggest that atmospheric multiphase models may be incomplete for highly soluble organics as biodegradation may represent an unrecognized efficient loss of such organics in cloud water.


Sign in / Sign up

Export Citation Format

Share Document