scholarly journals First beam test results with Micromegas, a high-rate, high-resolution detector

Author(s):  
G. Charpak ◽  
J. Derré ◽  
A. Giganon ◽  
Y. Giomataris ◽  
D. Jourde ◽  
...  
Author(s):  
Yi Wang ◽  
Jingbo Wang ◽  
Xianglei Zhu ◽  
Yuanjing Li ◽  
Jianping Cheng ◽  
...  

2021 ◽  
Vol 68 (2) ◽  
pp. 173-181
Author(s):  
C. A. Aidala ◽  
S. Altaf ◽  
R. Belmont ◽  
S. Boose ◽  
D. Cacace ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4722
Author(s):  
Botan Wang ◽  
Xiaolong Chen ◽  
Yi Wang ◽  
Dong Han ◽  
Baohong Guo ◽  
...  

This work reports the latest observations on the behavior of two Multigap Resistive Plate Chambers (MRPC) under wide high-luminosity exposures, which motivate the development and in-beam test of the sealed MRPC prototype assembled with low-resistive glass. The operation currently being monitored, together with previous simulation results, shows the impact of gas pollution caused by avalanches in gas gaps, and the necessity to shrink the gas-streaming volume. With the lateral edge of the detector sealed by a 3D-printed frame, a reduced gas-streaming volume of ~170 mL has been achieved for a direct gas flow to the active area. A high-rate test of the sealed MRPC prototype shows that, ensuring a 97% efficiency and 70 ps time resolution, the sealed design results in a stable operation current behavior at a counting rate of 3–5 kHz/cm2. The sealed MRPC will become a potential solution for future high luminosity applications.


2015 ◽  
Vol 732 ◽  
pp. 85-90
Author(s):  
Lukáš Bek ◽  
Radek Kottner ◽  
Jan Krystek ◽  
Tomáš Kroupa

Different carbon and glass fibre strips were subjected to the double clamp buckle beam test. Furthermore, thin-walled glass fibre box-beams were subjected to the three-point bending test. Results of experiments were compared to different numerical simulations using buckling analysis or static analysis considering large deformations.


Author(s):  
V. Chabaud ◽  
H. Dijkstra ◽  
M. Gröne ◽  
M. Flohr ◽  
R. Horisberger ◽  
...  
Keyword(s):  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Brian Mondeja ◽  
Odalys Valdes ◽  
Sonia Resik ◽  
Ananayla Vizcaino ◽  
Emilio Acosta ◽  
...  

Abstract Background The novel coronavirus SARS-CoV-2 is the etiological agent of COVID-19. This virus has become one of the most dangerous in recent times with a very high rate of transmission. At present, several publications show the typical crown-shape of the novel coronavirus grown in cell cultures. However, an integral ultramicroscopy study done directly from clinical specimens has not been published. Methods Nasopharyngeal swabs were collected from 12 Cuban individuals, six asymptomatic and RT-PCR negative (negative control) and six others from a COVID-19 symptomatic and RT-PCR positive for SARS CoV-2. Samples were treated with an aldehyde solution and processed by scanning electron microscopy (SEM), confocal microscopy (CM) and, atomic force microscopy. Improvement and segmentation of coronavirus images were performed by a novel mathematical image enhancement algorithm. Results The images of the negative control sample showed the characteristic healthy microvilli morphology at the apical region of the nasal epithelial cells. As expected, they do not display virus-like structures. The images of the positive sample showed characteristic coronavirus-like particles and evident destruction of microvilli. In some regions, virions budding through the cell membrane were observed. Microvilli destruction could explain the anosmia reported by some patients. Virus-particles emerging from the cell-surface with a variable size ranging from 80 to 400 nm were observed by SEM. Viral antigen was identified in the apical cells zone by CM. Conclusions The integral microscopy study showed that SARS-CoV-2 has a similar image to SARS-CoV. The application of several high-resolution microscopy techniques to nasopharyngeal samples awaits future use.


2018 ◽  
Author(s):  
Irene Zoi ◽  
M. Boscardin ◽  
G.F. Dalla Betta ◽  
M. Dinardo ◽  
G. Giacomini ◽  
...  

1995 ◽  
Author(s):  
J.L. Brady ◽  
D.S. Wolcott ◽  
P.H. Daggett ◽  
J.F. Ferguson ◽  
J.L. Hare ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document