Experimental and Numerical Investigation of Critical Buckle Load of Composite Specimens

2015 ◽  
Vol 732 ◽  
pp. 85-90
Author(s):  
Lukáš Bek ◽  
Radek Kottner ◽  
Jan Krystek ◽  
Tomáš Kroupa

Different carbon and glass fibre strips were subjected to the double clamp buckle beam test. Furthermore, thin-walled glass fibre box-beams were subjected to the three-point bending test. Results of experiments were compared to different numerical simulations using buckling analysis or static analysis considering large deformations.

2011 ◽  
Vol 391-392 ◽  
pp. 1445-1449
Author(s):  
Chun Hua Zhang ◽  
Shi Lin Luan ◽  
Xiu Song Qian ◽  
Bao Hua Sun ◽  
Wen Sheng Zhang

The influences of low temperature on the interlaminar properties for PBO fiber/epoxy composites have been studied at liquid nitrogen temperature (77 K) in terms of three point bending test. Results showed that the interlaminar shear strength at 77 K were significantly higher than those at room temperature (RT). For the analysis of the test results, the tensile behaviors of epoxy resin at both room temperature and liquid nitrogen temperature were investigated. The interface between fiber and matrix was observed using SEM images.


2014 ◽  
Vol 580-583 ◽  
pp. 2213-2219 ◽  
Author(s):  
Lin Liao ◽  
Sergio Cavalaro ◽  
Albert de la Fuente ◽  
Antonio Aguado

Many researches have been conducted in past decades for promoting the application of steel fibre reinforced concrete (SFRC), either conventional or self-compacting. However, the differences of post-crack behaviour and the properties of these two types of concrete remains unclear. The objective of this paper is to analyse such differences in terms of flexural behaviour, fibre orientation and contribution as well as the fibre content. For that, an extensive experimental campaign was carried out. In total 3 mixes of self-compacting and 3 mixes with traditional concrete were produced with the nominal fibre contents of 30kg/m3, 45kg/m3 and 60kg/m3. In each series, specimens were produces and characterized by three point bending test (code EN 14651) and inductive test. The results illustrate how fibre orientation and distribution justify the differences in the mechanical behaviour of the materials and the scatter of the bending test results.


2017 ◽  
Vol 10 (3) ◽  
pp. 744-759
Author(s):  
G. O. RIBEIRO ◽  
P. C. GUETTI ◽  
P. SERNA

ABSTRACT Considering the physical nonlinearity of concrete and the fundamentals of fracture mechanics for quasi-brittle materials, the objective of this study was to determine the fracture energy and the length of the fracture process zone (FPZ) as well as the modulus of elasticity, the tensile strength and the compressive strength of self-compacting concrete (SCC) to characterize its mechanical behavior. A series of tests, including a three-point bending test of SCC and conventional vibrated concrete (CVC) specimens, with a notch at mid-span, and tensile and compressive tests were performed. The mechanical parameters obtained from the CVC specimens were considered as a comparative reference. The effect of the following variables was evaluated and considered at two levels: compressive strength (30 and 50 MPa), granular composition (fine and coarse particle size) and maximum diameter of the aggregate (12 and 20 mm). The effect of these variables on the mechanical behaviors of the SCC specimens was evaluated based on the test results of specimens of four types of concrete, which were obtained from the combination of the variables. The bending tests were performed according to the RILEM TC 89-FMT recommendations, which are based on the size-effect method.


2016 ◽  
Vol 254 ◽  
pp. 283-289
Author(s):  
Tomasz Sadowski ◽  
Marek Nowicki ◽  
Daniel Pietras ◽  
Przemysław Golewski

This paper is focused on description of the mechanical response of the aluminum box-beams subjected to 3 point bending (3-PB). The main aim of this paper is to determine the effect of spacing between rivets on the equivalent stiffness and strength of the analised profile. The considered beams are composed of two sections: one of them is an aluminum omega profile and another is a composite flat sheet. Experimental tests were carried out for various spacing between rivets. Moreover, the corresponding numerical analyses by Finite Element Analysis (FEA) with application of the Abaqus software were done for estimate of the mechanical response of the box beams. The results show relationship between spacing of the rivets and values of carrying forces.


1997 ◽  
Vol 67 (5) ◽  
pp. 316-320 ◽  
Author(s):  
I. Krucinska ◽  
S. Krucinski

This paper evaluates a loop bending test that can measure the intrinsic strength and breaking strain of carbon fibers. The discussion extends from the applicability of a closed-form solution for prismatic bar flexure, subjected to large deformations, to an interpretation of the test results. The assumptions embedded in the closed-form solution are verified by finite element computer simulations of the loop test.


2015 ◽  
Vol 764-765 ◽  
pp. 1090-1094
Author(s):  
Tippabhotla D. Gunneswara Rao ◽  
P. Alfrite ◽  
G. Mallikarjuna Rao ◽  
Mudimby Andal

Geopolymer concrete (GPC) is a new construction material in which cement is totally replaced by calcined source materials fly ash and GGBS. Geopolymer utilization reduces or eliminates the use of cement whose production produces a lot of carbon dioxide. Usually fly ash as a source material for the geopolymer. The behavior of GPC has to be studied in detail to check its suitability in construction industry. In the present study, the fracture behavior of geopolymer concrete is investigated and compared. Three-point bending test on notched prisms with a/d (notch depth/beam depth) ratios 0.1, 0.15, 0.2 are considered. The values of Critical load, fracture toughness, fracture energy and ductility are presented. The test results of total of 27prisms, 6cubes, 18 cylinders with M30 grade geopolymer concrete and conventional concrete (OPC) of same grade are presented in this paper. The test results indicated that the characteristic length of GPC is about 25% more than that of conventional concrete.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2659
Author(s):  
Abdulaziz Alhotan ◽  
Julian Yates ◽  
Saleh Zidan ◽  
Julfikar Haider ◽  
Nikolaos Silikas

The aim of this work was to evaluate the flexural strength and surface hardness of heat-cured Polymethyl methacrylate (PMMA) modified by the addition of ZrO2 nanoparticles, TiO2 nanoparticles, and E-glass fibre at different wt.% concentrations. Specimens were fabricated and separated into four groups (n = 10) to measure both flexural strength and surface hardness. Group C was the control group. The specimens in the remaining three groups differed according to the ratio of filler to weight of PMMA resin (1.5%, 3%, 5%, and 7%). A three-point bending test was performed to determine the flexural strength, while the surface hardness was measured using the Vickers hardness. Scanning Electron Microscope (SEM) was employed to observe the fractured surface of the specimens. The flexural strength was significantly improved in the groups filled with 3 wt.% ZrO2 and 5 and 7 wt.% E-glass fibre in comparison to Group C. All the groups displayed a significantly higher surface hardness than Group C, with the exception of the 1.5% TiO2 and 1.5% ZrO2 groups. The optimal filler concentrations to enhance the flexural strength of PMMA resin were between 3–5% ZrO2, 1.5% TiO2, and 3–7% E-glass fibre. Furthermore, for all composites, a filler concentration of 3 wt.% and above would significantly improve hardness.


2018 ◽  
Vol 195 ◽  
pp. 02029
Author(s):  
Kusnindar ◽  
Sri Murni Dewi ◽  
Agoes Soehardjono ◽  
Wisnumurti

This paper aims to describe the performance of mix-glue laminated timber beams that are given a nylon strapping as external reinforcement with the three-point bending test to three groups of beams based on the span-to-depth ratio, i.e.: G11, G8, and G5 groups. Each group consists of three types of lamination compositions, namely: Type I, whole lamination consists of sengon wood; Type II, the placement of the coconut wood lamination as the outermost; Type III, similar to type II with added nylon straps with a distance of 5 mm. The bending test results show differences in elastic modulus, flexural strength and shear strength of the glue-laminated timber beams. Based on the comparison of glulam beams consisting of six laminations of sengon wood it was found that the placement of the coconut wood as the outermost lamination succeeded in increasing the elastic modulus, the flexural and shear strength of beams by 28%, 13%, and 34%, respectively. In addition, the reinforcement with nylon straps results in the modulus of elasticity, bending and shear strength of glulam to increase by by 41%, 2%, and 49% respectively.


2021 ◽  
Vol 63 (12) ◽  
pp. 727-733
Author(s):  
A H Abdulaziz ◽  
J McCrory ◽  
K Holford ◽  
A Elsabbagh ◽  
M Hedaya

Due to their complexity, detecting and analysing damage modes in composite honeycomb sandwich panels can be difficult. This article describes the way in which a three-point bending test (3PBT) was performed on a glass fibre aluminium honeycomb sandwich panel (HSP). Acoustic emission (AE) was used to identify damage signals, which were then analysed to determine the positions and characteristics of defects. To locate damage positions, Delta-T mapping was used. The test load was progressively applied in three phases, with the specimen being inspected visually during each phase. A scanning electron microscope (SEM) showed that the most significant damage was local crushing under the test load, which caused matrix cracking, fibre breakage and pull-out. Damage progression and the damage mode were detected using the cumulative energy and frequency spectra of the AE sources for each phase. Matrix cracking frequencies ranged from 30 kHz to 100 kHz, while fibre damage modes ranged from 157 kHz to 322 kHz. The findings highlighted the utility of Delta-T mapping in locating damage positions on sandwich structures under testing. The investigation also emphasised the value of studying frequency spectra and cumulative energy when analysing AE signals.


Author(s):  
K Xiao ◽  
K W Dalgarno ◽  
D J Wood ◽  
R D Goodridge ◽  
C Ohtsuki

This paper develops an indirect selective laser sintering (SLS) processing route for apatite—wollastonite (A—W) glass—ceramic, and shows that the processing route, which can create porous three-dimensional products suitable for bone implants or scaffolds, does not affect the excellent mechanical and biological properties of the glass—ceramic. ‘Green parts’ with fine integrity and well-defined shape have been produced from glass particles of single-size range or mixed-size ranges with acrylic binder in various ratios by weight. A subsequent heat treatment process has been developed to optimize the crystallization process, and an infiltration process has been explored to enhance mechanical strength. Three-point bending test results show flexural strengths of up to 102 MPa, dependent on porosity, and simulated body fluid (SBF) tests show that the laser sintered porous A—W has comparable biological properties to that of conventionally produced A—W.


Sign in / Sign up

Export Citation Format

Share Document