Leaf Water Status in Velvetleaf under Long-term Interactions of Water Stress, Atmospheric Humidity, and Carbon Dioxide

1992 ◽  
Vol 139 (5) ◽  
pp. 600-604 ◽  
Author(s):  
Yao-Hua Luo ◽  
Boyd R. Strain
1984 ◽  
Vol 102 (3) ◽  
pp. 687-693 ◽  
Author(s):  
Alejandra Paez ◽  
H. Hellmers ◽  
B. R. Strain

SummaryIf atmospheric carbon dioxide concentration continues to increase, plant growth and crop yield could be affected. New Yorker and Better Boy cultivars of tomato (Lycopersicon esculentum) were used to investigate possible intraspecific variation in the response of crop species to increased CO2. Because precipitation and temperature are predicted to change with the increasing atmospheric CO2 concentration, the response of the two cultivars to the interaction between CO2 and water stress was also examined. Seeds of the two cultivars were germinated and grown under controlled environmental conditions, in either 350 or 675 μ1 CO2/1.The plant water status of the two cultivars was inherently different but was little affected by the CO2 concentration when the plants were well watered. When water was withheld for 5 days the total leaf water potential and osmotic potential decreased in both CO2 treatments but less rapidly in high CO2 than in low. Under low CO2 total leaf water potential decreased to a lower value than osmotic potential. The differences were due, at least in part, to the reduced stomatal conductance and transpiration rate under high CO2.Increased CO2 ameliorated the detrimental effects of drought stress on plant growth. The results indicate that increased CO2 could differentially affect the relative drought resistance of species cultivars.


1989 ◽  
Vol 16 (6) ◽  
pp. 549 ◽  
Author(s):  
SL Steinberg ◽  
MJ Mcfarland ◽  
JC Miller

A gradation, that reflects the maturity of the leaves, exists in the leaf water, osmotic and turgor potential and stomatal conductance of leaves along current and 1-year-old branches of peach. Predawn leaf water potentials of immature folded leaves were approximately 0.24 MPa lower than mature leaves under both well-watered and dry conditions. During the daytime the leaf water potential of immature leaves reflected the water potential produced by water flux for transpiration. In well- watered trees, mature and immature unfolded leaves had a solute potential at least 0.5 MPa lower than immature folded leaves, resulting in a turgor potential that was approximately 0.8 MPa higher. The turgor requirement for growth appeared to be much less than that maintained in mature leaves. As water stress developed and leaf water potentials decreased, the osmotic potential of immature folded leaves declined to the level found in mature leaves, thus maintaining turgor. In contrast, mature leaves showed little evidence of turgor maintenance. Stomatal conductance was lower in immature leaves than in fully mature leaves. With the onset of water stress, conductance of mature leaves declined to a level near that of immature leaves. Loss of turgor in mature leaves may be a major factor in early stomatal closure. It was concluded that osmotic adjustment played a role in maintenance of a leaf water status favorable for some growth in water-stressed immature peach leaves.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yongtian Luo ◽  
Che-Ling Ho ◽  
Brent R. Helliker ◽  
Eleni Katifori

Leaf hydraulic networks play an important role not only in fluid transport but also in maintaining whole-plant water status through transient environmental changes in soil-based water supply or air humidity. Both water potential and hydraulic resistance vary spatially throughout the leaf transport network, consisting of xylem, stomata and water-storage cells, and portions of the leaf areas far from the leaf base can be disproportionately disadvantaged under water stress. Besides the suppression of transpiration and reduction of water loss caused by stomatal closure, the leaf capacitance of water storage, which can also vary locally, is thought to be crucial for the maintenance of leaf water status. In order to study the fluid dynamics in these networks, we develop a spatially explicit, capacitive model which is able to capture the local spatiotemporal changes of water potential and flow rate in monocotyledonous and dicotyledonous leaves. In electrical-circuit analogs described by Ohm's law, we implement linear capacitors imitating water storage, and we present both analytical calculations of a uniform one-dimensional model and numerical simulation methods for general spatially explicit network models, and their relation to conventional lumped-element models. Calculation and simulation results are shown for the uniform model, which mimics key properties of a monocotyledonous grass leaf. We illustrate water status of a well-watered leaf, and the lowering of water potential and transpiration rate caused by excised water source or reduced air humidity. We show that the time scales of these changes under water stress are hugely affected by leaf capacitance and resistances to capacitors, in addition to stomatal resistance. Through this modeling of a grass leaf, we confirm the presence of uneven water distribution over leaf area, and also discuss the importance of considering the spatial variation of leaf hydraulic traits in plant biology.


2014 ◽  
Vol 05 (11) ◽  
pp. 1547-1556
Author(s):  
Apurba Kanti Choudhury ◽  
Md Abdul Karim ◽  
Md Moynul Haque ◽  
Qazi Abdul Khaliq ◽  
Jalal Uddin Ahmed ◽  
...  

2010 ◽  
Vol 37 (8) ◽  
pp. 726 ◽  
Author(s):  
Matthew T. Harrison ◽  
Walter M. Kelman ◽  
Andrew D. Moore ◽  
John R. Evans

To model the impact of grazing on the growth of wheat (Triticum aestivum L.), we measured photosynthesis in the field. Grazing may affect photosynthesis as a consequence of changes to leaf water status, nitrogen content per unit leaf area (Na) or photosynthetic enzyme activity. While light-saturated CO2 assimilation rates (Asat) of field-grown wheat were unchanged during grazing, Asat transiently increased by 33–68% compared with ungrazed leaves over a 2- to 4-week period after grazing ended. Grazing reduced leaf mass per unit area, increased stomatal conductance and increased intercellular CO2 concentrations (Ci) by 36–38%, 88–169% and 17–20%, respectively. Grazing did not alter Na. Using a photosynthesis model, we demonstrated that the increase in Asat after grazing required an increase in Rubisco activity of up to 53%, whereas the increase in Ci could only increase Asat by up to 13%. Increased Rubisco activity was associated with a partial alleviation of leaf water stress. We observed a 68% increase in leaf water potential of grazed plants that could be attributed to reduced leaf area index and canopy evaporative demand, as well as to increased rainfall infiltration into soil. The grazing of rain-fed grain cereals may be tailored to relieve plant water stress and enhance leaf photosynthesis.


1974 ◽  
Vol 82 (1) ◽  
pp. 19-27 ◽  
Author(s):  
D. K. Jackson

SUMMARYSimulated swards of Dactylis glomerata (var. S.37) and Lolium perenne (var. S.23) were grown in large lysimeters or vertical pipes of 15 cm diameter, both sufficiently deep to allow largely unrestricted root development.Rainfall was excluded, and the effect of a drying cycle on the plant water balance was compared with irrigated controls in a sequence of sampling harvests at increasing soil water deficits.Leaf water potential (ΨL) fell during the day, both in treatments and controls, to levels which might be expected to reduce extension growth and, frequently, stomatal diffusion. Rapid recovery occurred in the evening to levels which might allow normal functioning of growth processes not dependent on sunlight. Defoliation reduced plant stress and stomatal restriction.The amelioration of plant water stress appeared to require a reduction in atmospheric evaporative demand, and irrigation had relatively little effect. The possibility is discussed that the major benefits of irrigation are other than through the relief of water stress within the plant. The significance of this is considered in relation to conventional irrigation techniques.The leaf water status was more sensitive to drought, transpiration was reduced more, and the root system extended more slowly in Dactylis than in Lolium. Consequently, the onset of permanent wilting due to exhaustion of water from the profile was delayed compared with Lolium. It is deduced that this characteristic might enhance the survival of Dactylis in prolonged drought, but prove disadvantageous in terms of growth during short droughts, when reduced stomatal opening might limit CO2 uptake. This would not be an impediment, however, if investigations suggesting that partial closure has a minor effect on CO2 uptake compared with that on transpiration were to be confirmed.


2021 ◽  
Vol 43 (5) ◽  
Author(s):  
Amin Taheri-Garavand ◽  
Abdolhossein Rezaei Nejad ◽  
Dimitrios Fanourakis ◽  
Soodabeh Fatahi ◽  
Masoumeh Ahmadi Majd

1979 ◽  
Vol 92 (1) ◽  
pp. 83-89 ◽  
Author(s):  
H. G. Jones

SummaryThe potential offered for plant breeding programmes by visual scoring techniques for plant water status was investigated in rice and spring wheat. It was found that differing plant morphology could seriously bias visual estimates of leaf water potential, particularly in spring wheat. In spite of this problem, it was found that at least for rice, this type of approach may have potential in future breeding programmes where an estimate of leaf water status is required, such as those for drought tolerance, so long as a high intensity of selection is not necessary.


Sign in / Sign up

Export Citation Format

Share Document