β-cell antigen-specific CD56 + NKT cells from type 1 diabetic patients: autoaggressive effector T cells damage human CD56 + β cells by HLA-restricted and non-HLA-restricted pathways

2002 ◽  
Vol 63 (4) ◽  
pp. 256-270 ◽  
Author(s):  
Dawei Ou ◽  
Daniel L Metzger ◽  
Xiaojie Wang ◽  
Paolo Pozzilli ◽  
Aubrey J Tingle
2007 ◽  
Vol 27 (6) ◽  
pp. 321-326 ◽  
Author(s):  
N. Dekki ◽  
R. Nilsson ◽  
S. Norgren ◽  
S. M. Rössner ◽  
I. Appelskog ◽  
...  

The aim of this study was to clarify the frequency of patients with type 1 diabetes that have serum that increases pancreatic β-cell cytoplasmic free Ca2+ concentration, [Ca2+]i, and if such an effect is also present in serum from first-degree relatives. We also studied a possible link between the serum effect and ethnic background as well as presence of autoantibodies. Sera obtained from three different countries were investigated as follows: 82 Swedish Caucasians with newly diagnosed type 1 diabetes, 56 Americans with different duration of type 1 diabetes, 117 American first-degree relatives of type 1 diabetic patients with a mixed ethnic background and 31 Caucasian Finnish children with newly diagnosed type 1 diabetes. Changes in [Ca2+]i, upon depolarization, were measured in β-cells incubated overnight with sera from type 1 diabetic patients, first-degree relatives or healthy controls. Our data show that there is a group constituting approximately 30% of type 1 diabetic patients of different gender, age, ethnic background and duration of the disease, as well as first-degree relatives of type 1 diabetic patients, that have sera that interfere with pancreatic β-cell Ca2+-handling. This effect on β-cell [Ca2+]i could not be correlated to the presence of autoantibodies. In a defined subgroup of patients with type 1 diabetes and first-degree relatives a defect Ca2+-handling may aggravate development of β-cell destruction.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e26931 ◽  
Author(s):  
Speranza Masala ◽  
Daniela Paccagnini ◽  
Davide Cossu ◽  
Vedran Brezar ◽  
Adolfo Pacifico ◽  
...  

2020 ◽  
Vol 25 (2) ◽  
pp. 23
Author(s):  
Diana Gamboa ◽  
Carlos E. Vázquez ◽  
Paul J. Campos

Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.


2016 ◽  
Vol 157 (19) ◽  
pp. 740-745
Author(s):  
László Gerő

In type 1 diabetic patients perfect normoglycaemia can only be achieved by successful transplantation of the pancreas or Langerhans’ islets. Surgical transplantation of the whole pancreas is an invasive operation exerting great burden on the patients. Transplantation of the islets of Langerhans does not burden the patients but the survival of the islet grafts is limited. Both interventions are hampered by the lack of donor organs. However, much of these difficulties could be overcome by the use of “artificial β-cells” which ought to have an ultrastructure identical with that of natural β-cells and produce and secrete insulin in a glucose dependent manner. At present three such methods are at our disposal: transformation of the ductal cells of the exocrine pancreas into β-cells, development of β-cells from stem-cells, and neogenesis of Langerhans’ islets induced by viral delivery of transcription factors. The author summarises the experience and experimental results obtained with the use of the three methods. Orv. Hetil., 2016, 157(19), 740–745.


Sign in / Sign up

Export Citation Format

Share Document