Lip augmentation techniques

2003 ◽  
Vol 61 (8) ◽  
pp. 128a-129
Author(s):  
James Koehler ◽  
Peter Waite
1998 ◽  
Vol 15 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Russell W. H. Kridel

Introduction: The aging process results in elongation of the white portion of the upper lip, an overall decrease in the bulk and volume of the red lip, and diminished projection of the cupid's bow. Various methods of augmentation of the lips have been attempted, including subnasal lip-lift, vermilion lip advancement, and augmentation procedures including injections of collagen and autologous fat, and placement of dermal and fascia grafts, Gore-Tex®, and Soft-form™. The new acellular dermal grafts, which were first used in 1993 for dermal replacement grafts in burn patients, are now being evaluated for use in lip augmentation. Materials and Methods: AlloDerm® (acellular dermal graft) was used for lip augmentation in 12 female patients. The graft was placed into the subcutaneous region (superficial to the orbicularis oris) through a small incision in the oral mucosa just superior to each commissure while the patient was anesthetized using a combination of local and regional anesthesia. Results: Eleven out of twelve patients were extremely pleased with the results. One patient had the graft removed because of a feeling of tightness, which restricted motion of the mouth. Conclusions: The acellular dermal graft provides bulk, persistence, and a natural-looking option for lip augmentation.


2020 ◽  
Vol 10 (3) ◽  
pp. 62
Author(s):  
Tittaya Mairittha ◽  
Nattaya Mairittha ◽  
Sozo Inoue

The integration of digital voice assistants in nursing residences is becoming increasingly important to facilitate nursing productivity with documentation. A key idea behind this system is training natural language understanding (NLU) modules that enable the machine to classify the purpose of the user utterance (intent) and extract pieces of valuable information present in the utterance (entity). One of the main obstacles when creating robust NLU is the lack of sufficient labeled data, which generally relies on human labeling. This process is cost-intensive and time-consuming, particularly in the high-level nursing care domain, which requires abstract knowledge. In this paper, we propose an automatic dialogue labeling framework of NLU tasks, specifically for nursing record systems. First, we apply data augmentation techniques to create a collection of variant sample utterances. The individual evaluation result strongly shows a stratification rate, with regard to both fluency and accuracy in utterances. We also investigate the possibility of applying deep generative models for our augmented dataset. The preliminary character-based model based on long short-term memory (LSTM) obtains an accuracy of 90% and generates various reasonable texts with BLEU scores of 0.76. Secondly, we introduce an idea for intent and entity labeling by using feature embeddings and semantic similarity-based clustering. We also empirically evaluate different embedding methods for learning good representations that are most suitable to use with our data and clustering tasks. Experimental results show that fastText embeddings produce strong performances both for intent labeling and on entity labeling, which achieves an accuracy level of 0.79 and 0.78 f1-scores and 0.67 and 0.61 silhouette scores, respectively.


2021 ◽  
Vol 11 (5) ◽  
pp. 2284
Author(s):  
Asma Maqsood ◽  
Muhammad Shahid Farid ◽  
Muhammad Hassan Khan ◽  
Marcin Grzegorzek

Malaria is a disease activated by a type of microscopic parasite transmitted from infected female mosquito bites to humans. Malaria is a fatal disease that is endemic in many regions of the world. Quick diagnosis of this disease will be very valuable for patients, as traditional methods require tedious work for its detection. Recently, some automated methods have been proposed that exploit hand-crafted feature extraction techniques however, their accuracies are not reliable. Deep learning approaches modernize the world with their superior performance. Convolutional Neural Networks (CNN) are vastly scalable for image classification tasks that extract features through hidden layers of the model without any handcrafting. The detection of malaria-infected red blood cells from segmented microscopic blood images using convolutional neural networks can assist in quick diagnosis, and this will be useful for regions with fewer healthcare experts. The contributions of this paper are two-fold. First, we evaluate the performance of different existing deep learning models for efficient malaria detection. Second, we propose a customized CNN model that outperforms all observed deep learning models. It exploits the bilateral filtering and image augmentation techniques for highlighting features of red blood cells before training the model. Due to image augmentation techniques, the customized CNN model is generalized and avoids over-fitting. All experimental evaluations are performed on the benchmark NIH Malaria Dataset, and the results reveal that the proposed algorithm is 96.82% accurate in detecting malaria from the microscopic blood smears.


2021 ◽  
Vol 11 (14) ◽  
pp. 6368
Author(s):  
Fátima A. Saiz ◽  
Garazi Alfaro ◽  
Iñigo Barandiaran ◽  
Manuel Graña

This paper describes the application of Semantic Networks for the detection of defects in images of metallic manufactured components in a situation where the number of available samples of defects is small, which is rather common in real practical environments. In order to overcome this shortage of data, the common approach is to use conventional data augmentation techniques. We resort to Generative Adversarial Networks (GANs) that have shown the capability to generate highly convincing samples of a specific class as a result of a game between a discriminator and a generator module. Here, we apply the GANs to generate samples of images of metallic manufactured components with specific defects, in order to improve training of Semantic Networks (specifically DeepLabV3+ and Pyramid Attention Network (PAN) networks) carrying out the defect detection and segmentation. Our process carries out the generation of defect images using the StyleGAN2 with the DiffAugment method, followed by a conventional data augmentation over the entire enriched dataset, achieving a large balanced dataset that allows robust training of the Semantic Network. We demonstrate the approach on a private dataset generated for an industrial client, where images are captured by an ad-hoc photometric-stereo image acquisition system, and a public dataset, the Northeastern University surface defect database (NEU). The proposed approach achieves an improvement of 7% and 6% in an intersection over union (IoU) measure of detection performance on each dataset over the conventional data augmentation.


2021 ◽  
Vol 189 ◽  
pp. 292-299
Author(s):  
Caroline Sabty ◽  
Islam Omar ◽  
Fady Wasfalla ◽  
Mohamed Islam ◽  
Slim Abdennadher

Author(s):  
Xuhai Xu ◽  
Ebrahim Nemati ◽  
Korosh Vatanparvar ◽  
Viswam Nathan ◽  
Tousif Ahmed ◽  
...  

The prevalence of ubiquitous computing enables new opportunities for lung health monitoring and assessment. In the past few years, there have been extensive studies on cough detection using passively sensed audio signals. However, the generalizability of a cough detection model when applied to external datasets, especially in real-world implementation, is questionable and not explored adequately. Beyond detecting coughs, researchers have looked into how cough sounds can be used in assessing lung health. However, due to the challenges in collecting both cough sounds and lung health condition ground truth, previous studies have been hindered by the limited datasets. In this paper, we propose Listen2Cough to address these gaps. We first build an end-to-end deep learning architecture using public cough sound datasets to detect coughs within raw audio recordings. We employ a pre-trained MobileNet and integrate a number of augmentation techniques to improve the generalizability of our model. Without additional fine-tuning, our model is able to achieve an F1 score of 0.948 when tested against a new clean dataset, and 0.884 on another in-the-wild noisy dataset, leading to an advantage of 5.8% and 8.4% on average over the best baseline model, respectively. Then, to mitigate the issue of limited lung health data, we propose to transform the cough detection task to lung health assessment tasks so that the rich cough data can be leveraged. Our hypothesis is that these tasks extract and utilize similar effective representation from cough sounds. We embed the cough detection model into a multi-instance learning framework with the attention mechanism and further tune the model for lung health assessment tasks. Our final model achieves an F1-score of 0.912 on healthy v.s. unhealthy, 0.870 on obstructive v.s. non-obstructive, and 0.813 on COPD v.s. asthma classification, outperforming the baseline by 10.7%, 6.3%, and 3.7%, respectively. Moreover, the weight value in the attention layer can be used to identify important coughs highly correlated with lung health, which can potentially provide interpretability for expert diagnosis in the future.


2021 ◽  
Vol 7 (3) ◽  
pp. 46
Author(s):  
Jiajun Zhang ◽  
Georgina Cosma ◽  
Jason Watkins

Demand for wind power has grown, and this has increased wind turbine blade (WTB) inspections and defect repairs. This paper empirically investigates the performance of state-of-the-art deep learning algorithms, namely, YOLOv3, YOLOv4, and Mask R-CNN for detecting and classifying defects by type. The paper proposes new performance evaluation measures suitable for defect detection tasks, and these are: Prediction Box Accuracy, Recognition Rate, and False Label Rate. Experiments were carried out using a dataset, provided by the industrial partner, that contains images from WTB inspections. Three variations of the dataset were constructed using different image augmentation settings. Results of the experiments revealed that on average, across all proposed evaluation measures, Mask R-CNN outperformed all other algorithms when transformation-based augmentations (i.e., rotation and flipping) were applied. In particular, when using the best dataset, the mean Weighted Average (mWA) values (i.e., mWA is the average of the proposed measures) achieved were: Mask R-CNN: 86.74%, YOLOv3: 70.08%, and YOLOv4: 78.28%. The paper also proposes a new defect detection pipeline, called Image Enhanced Mask R-CNN (IE Mask R-CNN), that includes the best combination of image enhancement and augmentation techniques for pre-processing the dataset, and a Mask R-CNN model tuned for the task of WTB defect detection and classification.


Sign in / Sign up

Export Citation Format

Share Document