Expression of integrins of the β1 family in thyroid cells from patients with Graves' disease in vivo and in vitro

Biochimie ◽  
1999 ◽  
Vol 81 (5) ◽  
pp. 477-484
Author(s):  
Mario Vitale ◽  
Stefano De Riu ◽  
Gianfranco F Fenzi ◽  
Adele Casamassima ◽  
Salvatore Salzano ◽  
...  
Keyword(s):  
1988 ◽  
Vol 117 (3) ◽  
pp. 365-372 ◽  
Author(s):  
Kanji Kasagi ◽  
Hiroto Hatabu ◽  
Yasutaka Tokuda ◽  
Keisuke Arai ◽  
Yasuhiro Iida ◽  
...  

Abstract. By using an assay measuring cAMP production in FRTL-5 thyroid cells, thyroid stimulating antibodies (TSab) were detected in all of 15 patients with euthyroid Graves' disease (EG) and of 26 patients with hyperthyroid Graves' disease (HG). There was no significant difference between TSab activities in EG and in HG. In an effort to elucidate why EG patients remain euthyroid in spite of having TSab, we investigated the effect of the patient's crude immunoglobulin fractions on 125I uptake in FRTL-5 thyroid cells, one of the indices of stimulation subsequent to cAMP production. The 125I uptake stimulating (IUS) activity was positive in 46.7% (7/15) of EG patients and 88.5% (23/26) of HG patients, being significantly lower in the former than in the latter (P < 0.02). Although the IUS activities significantly correlated with TSab activities in 41 patients with EG and HG (r = 0.784, P < 0.001), the ratio of IUS to TSab in EG tended to be lower than that in HG. TSH-binding inhibitor immunoglobulins (TBII) activities in EG patients were negative or weakly positive, being significantly lower than those in HG patients (P < 0.001). Thus, the ratios of TBII to both TSab and IUS activities were significantly higher in HG than in EG (P < 0.01, P < 0.001, respectively). The in vitro IUS activities also correlated with TBII activities (r = 0.441, P < 0.001) and in vivo 99mTc thyroid uptake (r = 0.401, P < 0.001) in both EG and HG patients. The EG patients with positive IUS activities displayed smaller goitre size and lower 99m thyroid uptake in comparison to 19 HG patients with a similar range of IUS activities. There was a good correlation between thyroid weight and 99mTc thyroid uptake (r = 0.827, P < 0.001). In conclusion, lower IUS activity and/or smaller goitre size in EG than in HG, which may lead to lower thyroidal uptake of 99mTc and presumably radioiodine in vivo, might be a factor responsible for keeping EG patients euthyroid despite the presence of TSab.


2021 ◽  
Vol 22 (14) ◽  
pp. 7666
Author(s):  
Sara C. Credendino ◽  
Marta De Menna ◽  
Irene Cantone ◽  
Carmen Moccia ◽  
Matteo Esposito ◽  
...  

Forkhead box E1 (FOXE1) is a lineage-restricted transcription factor involved in thyroid cancer susceptibility. Cancer-associated polymorphisms map in regulatory regions, thus affecting the extent of gene expression. We have recently shown that genetic reduction of FOXE1 dosage modifies multiple thyroid cancer phenotypes. To identify relevant effectors playing roles in thyroid cancer development, here we analyse FOXE1-induced transcriptional alterations in thyroid cells that do not express endogenous FOXE1. Expression of FOXE1 elicits cell migration, while transcriptome analysis reveals that several immune cells-related categories are highly enriched in differentially expressed genes, including several upregulated chemokines involved in macrophage recruitment. Accordingly, FOXE1-expressing cells induce chemotaxis of co-cultured monocytes. We then asked if FOXE1 was able to regulate macrophage infiltration in thyroid cancers in vivo by using a mouse model of cancer, either wild type or with only one functional FOXE1 allele. Expression of the same set of chemokines directly correlates with FOXE1 dosage, and pro-tumourigenic M2 macrophage infiltration is decreased in tumours with reduced FOXE1. These data establish a novel link between FOXE1 and macrophages recruitment in the thyroid cancer microenvironment, highlighting an unsuspected function of this gene in the crosstalk between neoplastic and immune cells that shape tumour development and progression.


1997 ◽  
Vol 25 (2) ◽  
pp. 153-160
Author(s):  
Francesca Mattioli ◽  
Marianna Angiola ◽  
Laura Fazzuoli ◽  
Francesco Razzetta ◽  
Antonietta Martelli

Although primary cultures of human thyroid cells are used for endocrinological and toxicological studies, until now no attention has been paid toward verifying whether the hormonal conditions to which the gland was exposed in vivo prior to surgery could influence in vitro responses. Our findings suggest that the hormonal situation in vivo cannot be used as a predictive indicator of triiodothyronine and thyroxine release and/or S-phase frequency in vitro, either with or without the addition of bovine thyrotropin.


2008 ◽  
Vol 198 (2) ◽  
pp. 301-307 ◽  
Author(s):  
Ling Jin ◽  
Vanessa Chico-Galdo ◽  
Claude Massart ◽  
Christine Gervy ◽  
Viviane De Maertelaere ◽  
...  

Chronic administration of acrylamide has been shown to induce thyroid tumors in rat. In vitro acrylamide also causes DNA damage, as demonstrated by the comet assay, in various types of cells including human thyroid cells and lymphocytes, as well as rat thyroid cell lines. In this work, mice were administered acrylamide in their drinking water in doses comparable with those used in rats, i.e., around 3–4 mg/kg per day for mice treated 2, 6, and 8 months. Some of the mice were also treated with thyroxine (T4) to depress the activity of the thyroid. Others were treated with methimazole that inhibits thyroid hormone synthesis and consequently secretion and thus induces TSH secretion and thyroid activation. These moderate treatments were shown to have their known effect on the thyroid (e.g. thyroid hormone and thyrotropin serum levels, thyroid gland morphology…). Besides, T4 induced an important polydipsia and degenerative hypertrophy of adrenal medulla. Acrylamide exerted various discrete effects and at high doses caused peripheral neuropathy, as demonstrated by hind-leg paralysis. However, it did not induce thyroid tumorigenesis. These results show that the thyroid tumorigenic effects of acrylamide are not observed in another rodent species, the mouse, and suggest the necessity of an epidemiological study in human to conclude on a public health policy.


Author(s):  
BIN XU ◽  
DI WU ◽  
HONG YING ◽  
YING ZHANG

Backgroud/aim: The aim of this study was to assess the effect of a combination use of methimazole (MMI) and selenium (Se) in the treatment of Graves’ disease (GD). Materials and methods: A total of 103 newly-diagnosed hyperthyroidism patients were randomized to MMI and MMI+Se combination group. After treatment for six months, the levels of triiodothyronine (FT3), free thyroxine (FT4), thyrotrophin receptor antibody (TRAb), thyroid peroxidase antibody (TPOAb), and thyroglobulin antibody (TGAb) were observed. Besides, an in vitro culture model of thyroid cells was established and the protein expression and mRNA levels of TRAb, TPOAb and TGAb were determined by western blot and RT-PCR. Results: A significant decrease in the levels of FT3, FT4, TRAb, TPOAb and TGAb were observed in both groups along with a marked increase in TSH levels. Furthermore, the in vitro experiments showed that the protein expression and mRNA levels of TRAb, TPOAb and TGAb decreased significantly. Also, compared to the MMI group, there was a greater improvement of these indices in the MMI+Se group. Conclusion: We suggest that the combined use of MMI and Se could improve the thyroid activity in patients which may provide effective therapy for the treatment of GD in clinical settings. Key words: Graves’ disease; methimazole; selenium; TRAb; TPOAb; TGAb


1974 ◽  
Vol 19 (4) ◽  
pp. 165-169 ◽  
Author(s):  
I. R. McDougall ◽  
J. P. Kriss

The ocular manifestations of Graves' disease are probably due to autoimmunity. Thyroglobulin and complexes of thyroglobulin and antithyroglobulin have a predilection to attach to extraocular muscle membranes in vitro. It is suggested that in vivo these molecules are directed, probably via lymphatics, to the orbit where they attach to the muscle cell membranes. B lymphocytes, which have been shown to be capable of combining with both thyroglobulin and complexes, attach on to these molecules. The tissue damage is probably caused by the complexes, the lymphocytes, or both. Treatment of hyperthyroidism in a patient with ophthalmopathy should be cautious and with antithyroid drugs. This will reduce, though not completely eliminate, the possibility of a post-treatment exacerbation. If for some reason definitive treatment of the hyperthyroidism is essential, worsening of the ophthalmopathy may be prevented by prescribing steroids or immunosuppressive drugs at the time of surgical or radioiodine treatment. When progressive eye disease has arisen, orbital radiotherapy is a safe effective alternative to high dose corticosteroid treatment or surgical decompression.


1988 ◽  
Vol 119 (2) ◽  
pp. 341-349 ◽  
Author(s):  
Z. Kraiem ◽  
R. Alkobi ◽  
O. Sadeh

ABSTRACT Using an in-vitro system of cultured human thyroid cells and cyclic AMP (cAMP) accumulation as an index of cell stimulation, we compared TSH and thyroid-stimulating immunoglobulin (TSI) with regard to thyrocyte sensitization and desensitization. The smallest dose of TSH (0·05 mU/ml) capable of stimulating thyroid cells was the same as the minimum dose required to induce desensitization upon subsequent rechallenge with the hormone. In contrast, about 30-fold higher doses of TSI were needed to cause cell refractoriness compared with doses capable of eliciting stimulation. Moreover, significant stimulation of the thyroid with TSI was apparent much later than with TSH. A longer time-lapse was also necessary for TSI to induce densensitization. Likewise, thyrocytes recovered more slowly from TSI compared with TSH desensitization. Although at high doses TSI induced homologous desensitization, at lower doses the antibody, unlike TSH, potentiated the cAMP response to subsequent exposure to the antibody. The stimulatory doses of TSI were in the range usually encountered in active Graves' disease, which may explain why prolonged TSI in vivo sustains a hyperthyroid condition. In addition, we found that under conditions in which TSH leads to desensitization of the cAMP response, the thyroid cells maintained their responsiveness in terms of triiodothyronine secretory activity. Pre-exposure of human thyrocytes to TSI induced heterologous desensitization towards the TSH-stimulated cAMP response. Moreover, addition of the antibody to maximally desensitizing doses of TSH decreased cell sensitivity to the hormone even further. In sharp contrast, preincubation of cells with TSH, or TSH plus TSI, potentiated by four- and twofold respectively the cAMP response to subsequent challenge with TSI. Taken together, the data reveal marked differences between the action of TSH and TSI, and raise interesting questions concerning the mechanism whereby TSH potentiates the cAMP response to TSI. J. Endocr. (1988) 119, 341–349


2002 ◽  
pp. 163-171 ◽  
Author(s):  
M Sequeira ◽  
B Jasani ◽  
D Fuhrer ◽  
M Wheeler ◽  
M Ludgate

OBJECTIVE: Thyroid function and growth are controlled by TSH. Hyperthyroidism can be due to Graves' Disease (GD), in which thyroid-stimulating antibodies mimic TSH, or gain-of-function mutations in the TSH receptor (TSHR). These activating mutations have poor surface expression when assessed in non-thyroidal cells in vitro but nothing is known of their in vivo behaviour. Several TSHR antibodies have been produced but none has been applied to thyroid paraffin sections. This study aimed to develop a technique suitable for use on paraffin sections and apply it to investigate TSHR expression in thyroids harbouring activating TSHR germline mutations compared with normal and GD thyroids. DESIGN AND METHODS: Immunocytochemistry coupled with antigen retrieval, using a spectrum of antibodies to the TSHR, was applied to paraffin sections of GD thyroid tissue. Subsequently, TSHR immunoreactivity was examined in three normal thyroids, three patients with GD and three patients with familial hyperthyroidism, due to different gain-of-function TSHR germline mutations, using the optimised protocol. RESULTS: Two antibodies, A10 and T3-495, to the extracellular domain (ECD) and membrane spanning region (MSR) of the TSHR respectively, produced specific basolateral staining of thyroid follicular cells. In normal and GD thyroids, basolateral staining with T3-495 was generally more intense than with A10, suggesting a possible surfeit of MSR over ECD. Graves' Disease thyroids have more abundant TSHR than normal glands. In contrast, thyroids harbouring gain-of-function mutations have the lowest expression in vivo, mirroring in vitro findings. CONCLUSIONS: The development of an immunocytochemical method applicable to paraffin sections has demonstrated that different molecular mechanisms causing hyperthyroidism result in the lowest (mutation) and highest (autoimmunity) levels of receptor at the thyrocyte surface.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 985
Author(s):  
Mara Mazzoni ◽  
Giuseppe Mauro ◽  
Lucia Minoli ◽  
Loredana Cleris ◽  
Maria Chiara Anania ◽  
...  

Inflammation plays a critical role in thyroid cancer onset and progression. We previously characterized the in vitro interplay between macrophages and senescent human thyrocytes and thyroid tumor-derived cell lines, modeling the early and the late thyroid tumor phases, respectively. We reported that both models are able to induce pro-tumoral M2-like macrophage polarization, through the activation of the COX2-PGE2 axis. Here, we investigated the presence of macrophage infiltrating cells in mouse xenografts derived from the above described cells models. We showed that subcutaneous injection in immunodeficient mice of both senescent human thyrocytes and thyroid tumor-derived cell lines elicits macrophage recruitment. Furthermore, considering the type of macrophage infiltrate, we observed a stronger infiltration of Arginase I positive cells (M2-like). Overall, these results demonstrate the in vivo capability of senescent and tumor thyroid cells to recruit and polarize macrophages, suggesting that the promotion of a pro-tumoral microenvironment through tumor associated macrophages may occurs in late as well as in early thyroid tumor stages, favoring tumor onset and progression.


Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 112 ◽  
Author(s):  
Cesidio Giuliani

Previous studies have shown that quercetin inhibits thyroid function both in vitro and in vivo. An attempt to evaluate the effect of quercetin at the promoter level of the thyroid-specific genes led to the observation that this compound induces the basal activity of the reporter vector. Therefore, the action of quercetin has been evaluated on the basal activity of several reporter vectors: The PGL3 basic, promoter and control vectors from Promega, and a pSV-based chloramphenicol acetyltransferase (CAT) reporter vector. In the Fisher Rat Thyroid cell Line FRTL-5 thyroid cells transiently transfected, quercetin 10 μM increased the basal activity of all the reporter vectors evaluated, although the degree of the effect was significantly different among them. The analysis of the difference among the regulatory regions of these vectors identified the activator protein 1 (AP-1) binding site as one of the potential sites involved in the quercetin effect. Electromobility shift assay experiments showed that the treatment with quercetin induced the binding of a protein complex to an oligonucleotide containing the AP-1 consensus binding site. This is the first study showing an effect of quercetin on AP-1 activity in thyroid cells. Further studies are in progress to understand the role of AP-1 activation in the effects of quercetin on thyroid function.


Sign in / Sign up

Export Citation Format

Share Document