Dynamics of the mammalian sperm plasma membrane in the process of fertilization

Author(s):  
Frits M Flesch ◽  
Barend M Gadella
1984 ◽  
Vol 98 (5) ◽  
pp. 1678-1684 ◽  
Author(s):  
D E Wolf ◽  
J K Voglmayr

An essential feature of the "fluid mosaic model" (Singer, S. J., and G. L. Nicolson , 1972, Science (Wash. DC)., 175:720-731) of the cell plasma membrane is the ability of membrane lipids and proteins to diffuse laterally in the plane of the membrane. Mammalian sperm are capable of overcoming free random diffusion and restricting specific membrane components, both lipid and protein, to defined regions of the sperm's surface. The patterns of these regionalizations evolve with the processes of sperm differentiation: spermatogenesis, epididymal maturation, and capacitation. We have used the technique of fluorescence recovery after photobleaching to measure the diffusion of the lipid analogue 1,1'- dihexadecyl 3,3,3',3'- tetramethylindocarbocyanine perchlorate ( C16dil ) on the different morphological regions of testicular and ejaculated ram spermatozoa. We have found: (a) that the major morphologically distinct regions (head, midpiece, and tail) of the plasma membrane of both testicular and ejaculated spermatozoa are also physically distinct as measured by C16dil diffusibility; (b) that despite regional differences in diffusibility there is exchange of this lipid analogue by lateral diffusion between the major morphological regions of the plasma membrane; and (c) that epididymal maturation results in changes in C16dil diffusibility in the different regions of the sperm plasma membrane. In particular, the plasma membranes of the anterior and posterior heads become physically distinct.


Reproduction ◽  
2005 ◽  
Vol 129 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Haim Breitbart ◽  
Gili Cohen ◽  
Sara Rubinstein

In order to fertilize, the mammalian spermatozoa should reside in the female reproductive tract for several hours, during which they undergo a series of biochemical modifications collectively called capacitation. Only capacitated sperm can undergo the acrosome reaction after binding to the egg zona pellucida, a process which enables sperm to penetrate into the egg and fertilize it. Polymerization of globular (G)-actin to filamentous (F)-actin occurs during capacitation, depending on protein kinase A activation, protein tyrosine phosphorylation, and phospholipase D activation. F-actin formation is important for the translocation of phospholipase C from the cytosol to the sperm plasma membrane during capacitation. Prior to the occurrence of the acrosome reaction, the F-actin should undergo depolymerization, a necessary process which enables the outer acrosomal membrane and the overlying plasma membrane to come into close proximity and fuse. The binding of the capacitated sperm to the zona pellucida induces a fast increase in sperm intracellular calcium, activation of actin severing proteins which break down the actin fibers, and allows the acrosome reaction to take place.


1991 ◽  
Vol 1061 (2) ◽  
pp. 185-196 ◽  
Author(s):  
Ajay P.S. Rana ◽  
Gopal C. Majumder ◽  
Suniti Misra ◽  
Amitabha Ghosh

1996 ◽  
Vol 270 (6) ◽  
pp. C1709-C1714 ◽  
Author(s):  
C. Foresta ◽  
M. Rossato ◽  
P. Chiozzi ◽  
F. Di Virgilio

We have identified the mechanism whereby extracellular ATP (ATPe) triggers the acrosome reaction in human spermatozoa. This nucleotide opens a ligand-gated ion channel expressed on the sperm plasma membrane. ATPe threshold and 50% effective concentration calculated on the total added ATPe are 0.1 and 2 mM, respectively, corresponding to a free ATP concentration (ATP4-) of 3 and 200 microM, respectively. The ATPe-gated channel is selective for monovalent cations (Na+, choline, and methylglucamine), whereas on the contrary, permeability to Ca2+ is negligible. Isosmolar replacement of extracellular Na+ with sucrose fully blocked ATPe-dependent sperm activation, thus suggesting a mandatory role for Na+ influx. These results show that human sperm express an ATPe-gated Na+ channel that might have an important role in sperm activation before egg fertilization.


2006 ◽  
Vol 120 (1) ◽  
pp. 33-44 ◽  
Author(s):  
P. C. N. Chiu ◽  
M.-K. Chung ◽  
R. Koistinen ◽  
H. Koistinen ◽  
M. Seppala ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document