Simulation and exergy analysis of transient diesel-engine operation

Energy ◽  
1997 ◽  
Vol 22 (9) ◽  
pp. 875-885 ◽  
Author(s):  
C.D. Rakopoulos ◽  
E.G. Giakoumis
Author(s):  
Petar Kazakov ◽  
Atanas Iliev ◽  
Emil Marinov

Over the decades, more attention has been paid to emissions from the means of transport and the use of different fuels and combustion fuels for the operation of internal combustion engines than on fuel consumption. This, in turn, enables research into products that are said to reduce fuel consumption. The report summarizes four studies of fuel-related innovation products. The studies covered by this report are conducted with diesel fuel and usually contain diesel fuel and three additives for it. Manufacturers of additives are based on already existing studies showing a 10-30% reduction in fuel consumption. Comparative experimental studies related to the use of commercially available diesel fuel with and without the use of additives have been performed in laboratory conditions. The studies were carried out on a stationary diesel engine СМД-17КН equipped with brake КИ1368В. Repeated results were recorded, but they did not confirm the significant positive effect of additives on specific fuel consumption. In some cases, the factors affecting errors in this type of research on the effectiveness of fuel additives for commercial purposes are considered. The reasons for the positive effects of such use of additives in certain engine operating modes are also clarified.


Author(s):  
Ming Zheng ◽  
David K. Irick ◽  
Jeffrey Hodgson

For diesel engines (CIDI) the excessive use of exhaust gas recirculation (EGR) can reduce in-cylinder oxides of nitrogen (NOx) generation dramatically, but engine operation can also approach zones with high instabilities, usually accompanied with high cycle-to-cycle variations and deteriorated emissions of total hydrocarbon (THC), carbon monoxide (CO), and soot. A new approach has been proposed and tested to eliminate the influences of recycled combustibles on such instabilities, by applying an oxidation catalyst in the high-pressure EGR loop of a turbocharged diesel engine. The testing was directed to identifying the thresholds of stable operation at high rates of EGR without causing cycle-to-cycle variations associated with untreated recycled combustibles. The elimination of recycled combustibles using the oxidation catalyst showed significant influences on stabilizing the cyclic variations, so that the EGR applicable limits are effectively extended. The attainability of low NOx emissions with the catalytically oxidized EGR is also evaluated.


2016 ◽  
Vol 90 ◽  
pp. 27-37 ◽  
Author(s):  
Mahesh. N. Shelar ◽  
S.D. Bagade ◽  
G.N. Kulkarni

2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


2019 ◽  
pp. 885-894
Author(s):  
Prateek D. Malwe ◽  
Bajirao S. Gawali ◽  
Ganesh S. Wahile

2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


2015 ◽  
Vol 4 (1) ◽  
pp. 1-10 ◽  
Author(s):  
D.N. Basavarajappa ◽  
N. R. Banapurmath ◽  
S.V. Khandal ◽  
G. Manavendra

For economic and social development of any country energy is one of the most essential requirements. Continuously increasing price of crude petroleum fuels in the present days coupled with alarming emissions and stringent emission regulations has led to growing attention towards use of alternative fuels like vegetable oils, alcoholic and gaseous fuels for diesel engine applications. Use of such fuels can ease the burden on the economy by curtailing the fuel imports. Diesel engines are highly efficient and the main problems associated with them is their high smoke and NOx emissions.  Hence there is an urgent need to promote the use of alternative fuels in place of high speed diesel (HSD) as substitute. India has a large agriculture base that can be used as a feed stock to obtain newer fuel which is renewable and sustainable. Accordingly Uppage oil methyl ester (UOME) biodiesel was selected as an alternative fuel. Use of biodiesels in diesel engines fitted with mechanical fuel injection systems has limitation on the injector opening pressure (300 bar). CRDI system can overcome this drawback by injecting fuel at very high pressures (1500-2500 bar) and is most suitable for biodiesel fuels which are high viscous. This paper presents the performance and emission characteristics of a CRDI diesel engine fuelled with UOME biodiesel at different injection timings and injection pressures. From the experimental evidence it was revealed that UOME biodiesel yielded overall better performance with reduced emissions at retarded injection timing of -10° BTDC in CRDI mode of engine operation.


1981 ◽  
Author(s):  
A. Lawson ◽  
A. J. Last ◽  
A. S. Desphande ◽  
E. W. Simmons

Sign in / Sign up

Export Citation Format

Share Document