Effects of sleep position, sleep state and age on heart rate responses following provoked arousal in term infants

2003 ◽  
Vol 71 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Rita Tuladhar ◽  
Richard Harding ◽  
Susan M Cranage ◽  
T.Michael Adamson ◽  
Rosemary S.C Horne
2005 ◽  
Vol 81 (8) ◽  
pp. 673-681 ◽  
Author(s):  
Rita Tuladhar ◽  
Richard Harding ◽  
T. Michael Adamson ◽  
Rosemary S.C. Horne

SLEEP ◽  
2012 ◽  
Author(s):  
Alain Beuchée ◽  
Alfredo I. Hernández ◽  
Charles Duvareille ◽  
David Daniel ◽  
Nathalie Samson ◽  
...  

PEDIATRICS ◽  
1984 ◽  
Vol 74 (4) ◽  
pp. 539-542
Author(s):  
Roberto Paludetto ◽  
Steven S. Robertson ◽  
Maureen Hack ◽  
Chandra R. Shivpuri ◽  
Richard J. Martin

The effects of nonnutritive sucking on transcutaneous oxygen tension, heart rate, and respiratory rate were studied sequentially in 14 sleeping preterm infants breathing room air. Transcutaneous oxygen tension increased during nonnutritive sucking in infants between 32 and 35 weeks postconceptional age, but not in those between 36 and 39 weeks. This response was not associated with a change in respiratory rate or sleep state, although heart rate tended to increase. These data offer further support for the beneficial effects of nonnutritive sucking in preterm infants.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A100-A101
Author(s):  
Shawn Barr ◽  
Kwanghyun Sohn ◽  
Gary Garcia

Abstract Introduction Heart rate variability (HRV) is commonly used to assess the activity of the autonomic nervous system (ANS). ANS function changes, reflected in HRV, result from factors including lifestyle, aging, cardiorespiratory illnesses, sleep state, and physiological stress. Despite broad interest in HRV, few studies have established normative overnight HRV values for a large population. To better understand population level HRV changes, ecologically-valid, overnight sleep SDNN (standard deviation of all normal heartbeat intervals, lower HRV is reflected by lower SDNN) values have been analyzed for a large sample of Sleep Number 360 smart bed users. Methods Overnight SDNN values were obtained over the course of 18.2M sleep sessions from 379,225 sleepers (48 ± 14.7 sessions/user). 50.9 percent of sleepers were female. The age was normally distributed with mean ± SD of 52.8 ± 12.7 years (range 21 to 84). Heartbeat intervals used to compute SDNN were extracted from a ballistocardiogram (BCG). BCG-based HRV estimation during sleep has previously been validated against ECG-based HRV with an R-square of 0.5. Results Using a Generalized Linear Model, significant cross-sectional associations with SDNN were observed for three variables of interest: age, gender, and day-of-the-week. For sleepers under 50, SDNN declined at a rate of about 2.1 ms/year, then leveled off for sleepers aged 50-65, and increased slightly thereafter. Women under 50 displayed lower, more slowly declining, SDNN values than men, but this trend reversed for sleepers over 50. Throughout the week, SDNN values followed a U-shaped (women) or L-shaped (men) pattern, where values were highest during the weekend and lowest at mid-week. Conclusion Using a smart bed to unobtrusively measure overnight SDNN values for a large set of sleepers in an ecologically valid environment, reveals significant effects of age, gender, and day of the week on overnight SDNN. Support (if any):


2021 ◽  
Vol 12 ◽  
Author(s):  
Xi Fang ◽  
Hong-Yun Liu ◽  
Zhi-Yan Wang ◽  
Zhao Yang ◽  
Tung-Yang Cheng ◽  
...  

Objective: Vagus nerve stimulation (VNS) is an adjunctive and well-established treatment for patients with drug-resistant epilepsy (DRE). However, it is still difficult to identify patients who may benefit from VNS surgery. Our study aims to propose a VNS outcome prediction model based on machine learning with multidimensional preoperative heart rate variability (HRV) indices.Methods: The preoperative electrocardiography (ECG) of 59 patients with DRE and of 50 healthy controls were analyzed. Responders were defined as having at least 50% average monthly seizure frequency reduction at 1-year follow-up. Time domain, frequency domain, and non-linear indices of HRV were compared between 30 responders and 29 non-responders in awake and sleep states, respectively. For feature selection, univariate filter and recursive feature elimination (RFE) algorithms were performed to assess the importance of different HRV indices to VNS outcome prediction and improve the classification performance. Random forest (RF) was used to train the classifier, and leave-one-out (LOO) cross-validation was performed to evaluate the prediction model.Results: Among 52 HRV indices, 49 showed significant differences between DRE patients and healthy controls. In sleep state, 35 HRV indices of responders were significantly higher than those of non-responders, while 16 of them showed the same differences in awake state. Low-frequency power (LF) ranked first in the importance ranking results by univariate filter and RFE methods, respectively. With HRV indices in sleep state, our model achieved 74.6% accuracy, 80% precision, 70.6% recall, and 75% F1 for VNS outcome prediction, which was better than the optimal performance in awake state (65.3% accuracy, 66.4% precision, 70.5% recall, and 68.4% F1).Significance: With the ECG during sleep state and machine learning techniques, the statistical model based on preoperative HRV could achieve a better performance of VNS outcome prediction and, therefore, help patients who are not suitable for VNS to avoid the high cost of surgery and possible risks of long-term stimulation.


1984 ◽  
Vol 57 (5) ◽  
pp. 1531-1535 ◽  
Author(s):  
T. Aizad ◽  
J. Bodani ◽  
D. Cates ◽  
L. Horvath ◽  
H. Rigatto

To determine the effect of a single breath of 100% O2 on ventilation, 10 full-term [body wt 3,360 +/- 110 (SE) g, gestational age 39 +/- 0.4 wk, postnatal age 3 +/- 0.6 days] and 10 preterm neonates (body wt 2,020 +/- 60 g, gestational age 34 +/- 2 wk, postnatal age 9 +/- 2 days) were studied during active and quiet sleep states. The single-breath method was used to measure peripheral chemoreceptor response. To enhance response and standardize the control period for all infants, fractional inspired O2 concentration was adjusted to 16 +/- 0.6% for a control O2 saturation of 83 +/- 1%. After 1 min of control in each sleep state, each infant was given a single breath of O2 followed by 21% O2. Minute ventilation (VE), tidal volume (VT), breathing frequency (f), alveolar O2 and CO2 tension, O2 saturation (ear oximeter), and transcutaneous O2 tension were measured. VE always decreased with inhalation of O2 (P less than 0.01). In quiet sleep, the decrease in VE was less in full-term (14%) than in preterm (40%) infants (P less than 0.001). Decrease in VE was due primarily to a drop in VT in full-term infants as opposed to a fall in f and VT in preterm infants (P less than 0.05). Apnea, as part of the response, was more prevalent in preterm than in full-term infants. In active sleep the decrease in VE was similar both among full-term (19%) and preterm (21%) infants (P greater than 0.5). These results suggest greater peripheral chemoreceptor response in preterm than in full-term infants, reflected by a more pronounced decrease in VE with O2. The results are compatible with a more powerful peripheral chemoreceptor contribution to breathing in preterm than in full-term infants.


1996 ◽  
Vol 80 (5) ◽  
pp. 1627-1636 ◽  
Author(s):  
B. J. Morgan ◽  
D. C. Crabtree ◽  
D. S. Puleo ◽  
M. S. Badr ◽  
F. Toiber ◽  
...  

The arterial pressure elevations that accompany sleep apneas may be caused by chemoreflex stimulation, negative intrathoracic pressure, and/or arousal. To assess the neurocirculatory effects of arousal alone, we applied graded auditory stimuli during non-rapid-eye-movement (NREM) sleep in eight healthy humans. We measured muscle sympathetic nerve activity (intraneural microelectrodes), electroencephalogram (EEG; C4/A1 and O1/A2), arterial pressure (photoelectric plethysmography), heart rate (electrocardiogram), and stroke volume (impedance cardiography). Auditory stimuli caused abrupt increases in systolic and diastolic pressures (21 +/- 2 and 15 +/- 1 mmHg) and heart rate (11 +/- 2 beats/min). Cardiac output decreased (-10%). Stimuli that produced EEG evidence of arousal evoked one to two large bursts of sympathetic activity (316 +/- 46% of baseline amplitude). Stimuli that did not alter EEG frequency produced smaller but consistent pressor responses even though no sympathetic activation was observed. We conclude that arousal from NREM sleep evokes a pressor response caused by increased peripheral vascular resistance. Increased sympathetic outflow to skeletal muscle may contribute to, but is not required for, this vasoconstriction. The neurocirculatory effects of arousal may augment those caused by asphyxia during episodes of sleep-disordered breathing.


2017 ◽  
Vol 113 ◽  
pp. 104-113 ◽  
Author(s):  
Jan Werth ◽  
Xi Long ◽  
Elly Zwartkruis-Pelgrim ◽  
Hendrik Niemarkt ◽  
Wei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document