Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion. In vitro drug release and in vivo topical anti-inflammatory effect

2001 ◽  
Vol 222 (1) ◽  
pp. 45-55 ◽  
Author(s):  
M.E Dalmora ◽  
S.L Dalmora ◽  
A.G Oliveira
Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2529
Author(s):  
Haeyeop Kim ◽  
Woo Seok Yang ◽  
Khin Myo Htwe ◽  
Mi-Nam Lee ◽  
Young-Dong Kim ◽  
...  

Dipterocarpus tuberculatus Roxb. has been used traditionally as a remedy for many diseases, especially inflammation. Therefore, we analyzed and explored the mechanism of the anti-inflammatory effect of a Dipterocarpus tuberculatus Roxb. ethanol extract (Dt-EE). Dt-EE clearly and dose-dependently inhibited the expression of pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β in lipopolysaccharide (LPS)-treated RAW264.7 cells. Also, Dt-EE suppressed the activation of the MyD88/TRIF-mediated AP-1 pathway and the AP-1 pathway related proteins JNK2, MKK4/7, and TAK1, which occurred as a result of inhibiting the kinase activity of IRAK1 and IRAK4, the most upstream factors of the AP-1 pathway. Finally, Dt-EE displayed hepatoprotective activity in a mouse model of hepatitis induced with LPS/D-galactosamine (D-GalN) through decreasing the serum levels of alanine aminotransferase and suppressing the activation of JNK and IRAK1. Therefore, our results strongly suggest that Dt-EE could be a candidate anti-inflammatory herbal medicine with IRAK1/AP-1 inhibitory and hepatoprotective properties.


Gels ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Meenakshi Srinivas Iyer ◽  
Anil Kumar Gujjari ◽  
Sathishbabu Paranthaman ◽  
Amr Selim Abu Lila ◽  
Khaled Almansour ◽  
...  

Denture stomatitis (DS), usually caused by Candida infection, is one of the common denture-related complications in patients wearing dentures. Clove and cinnamon oils have been acknowledged for their anti-inflammatory, antimicrobial activity, and antifungal effects in the oral cavity. The aim of this study, therefore, was to prepare clove/cinnamon oils-loaded emulgel and to assess its efficacy in treating Candida albicans-associated denture stomatitis. Central composite design was adopted to formulate and optimize clove/cinnamon extracts-loaded emulgel. The formulated preparations were assessed for their physical appearance, particle size, viscosity, spreadability, and in-vitro drug release. In addition, in-vivo therapeutic experiments were conducted on 42 patients with denture stomatitis. The prepared emulgel formulations showed good physical characteristics with efficient drug release within 3 h. In addition, in-vivo antifungal studies revealed that the optimized formula significantly (p < 0.001) reduced Candida colony counts from the denture surface, compared to commercially available gel (240.38 ± 27.20 vs. 398.19 ± 66.73 CFU/mL, respectively). Furthermore, the optimized formula and succeeded in alleviating denture stomatitis-related inflammation with a better clinical cure rate compared to commercially available gel Collectively, herbal extracts-loaded emulgel might be considered an evolution of polyherbal formulations and might represent a promising alternative to the existing allopathic drugs for the treatment of denture stomatitis, with better taste acceptability and no side effects.


Author(s):  
KUMAR BABU PASUPULETI ◽  
VENKATACHALAM A. ◽  
BHASKAR REDDY KESAVAN

Objective: This study is to formulate Nebivolol into a Pulsatile liquid, solid composite compression coated tablet, which will delay the release of the drug in early morning hypertension conditions. Methods: The liquid, solid composite tablet was formulated and compressed with the ethylcellulose coating polymer. The percent in vitro drug release of the liquid solid composite compressed tablet was tested. Based on disintegration time and wetting time, the LCS2, LCS3, LSC6, LCS7 and LCS12 formulations were found to be the optimized solid-liquid compacts fast-dissolving core tablet formulations, which may be excellent candidates for further coating with polymer to transfer into press coated pulsatile tablet formulations. Coating the core tablet with varying ethyl cellulose concentrations resulted in five different formulations of the pulsatile press-coated tablet (CT1, CT2, CT3, CT4, CT5). In vitro drug release, in vitro release, kinetic studies, in vivo pharmacokinetic and stability tests were all performed for the prepared pulsatile press coated tablet. Results: CT3 tablets are coated with ethyl cellulose polymer, which shows maximum controlled drug release from the core tablet i.e. 96.34±1.2% at 8th h. It shows there was an efficient delay in drug release form core tablet i.e. up to 3 h, followed by the maximum amount of drug release of 96.34±2.4 at 8h. Which shows the core drug will be more efficiently protected from the gastric acid environment 1.2 pH, duodenal environment 4.0 pH and release drug only in the small intestine. Conclusion: According to the findings, CT3 Pulsatile press-coated tablet increased the bioavailability of Nebivolol by 3.11 percent.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


2021 ◽  
Author(s):  
Reinier Gesto-Borroto ◽  
Gabriela Meneses ◽  
Alejandro Espinosa-Cerón ◽  
Guillermo Granados ◽  
Jacquelynne Cervantes-Torres ◽  
...  

Abstract The genus Galphimia is widely distributed in Mexico, and is represented by 22 species, including medicinal species. The sedative and anti-inflammatory effects of galphimines produced by the species Galphimia glauca have been documented. Formerly, molecular studies using DNA barcodes demonstrated that nine populations botanically classified as Galphimia glauca belong to four different species of the genus Galphimia, and that only one exhibited the sedative properties; however, all the collected species showed anti-inflammatory activity. Other bioactive compounds like quercetin, galphins, galphimidins and glaucacetalins have been identified from methanolic extracts of plants botanically classified as Galphimia glauca. The aim of this work was to determine the anti-inflammatory activity of methanolic extracts of nine collected Galphimia spp. populations grown in Mexico. The possible modes of action were analyzed by evaluating the inhibition of LPS-induced inflammation processes both in vitro and in vivo. The nine populations were evaluated by an in vitro model using RAW 264.7 murine macrophage cells, and two populations (a galphimine-producing and a non-galphimine-producing population) were selected for the in vivo experiments of systemic inflammation and neuroinflammation in mice. Results suggest that an anti-inflammatory in vitro effect was present in all the studied populations, evidenced by the inhibition of nitrite production. An inhibitory systemic inflammation in mice was exerted by the two analyzed populations. In the neuroinflammation model, the anti-inflammatory effect was demonstrated in methanolic extract of the non-galphimine-producing population. For the populations of Galphimia spp. studied herein, the anti-inflammatory effect could not be correlated to the presence of galphimines.


Author(s):  
Boussoualim Naouel ◽  
Trabsa Hayat ◽  
Krache Imane ◽  
Ouhida Soraya ◽  
Arrar Lekhmissi ◽  
...  

Background: Anchusa azurea Mill. (AA) is a medicinal plant largely used traditionally in folk medicine in Algeria, it is locally named: hamham. It is effective in the treatment of various diseases. Objectives: The aim of the present study is to determine the antioxidant, anti-inflammatory and anti-hemolytic effects of phenolic fractions from Anchusa azurea Mill. Methods: In this study, various extracts from Anchusa azurea Mill. (AA) using solvents with increasing polarity were prepared. The quantification of polyphenols and flavonoids was determined. The anti-radical activity of the different extracts was evaluated using DPPH and by measuring the inhibition of the oxidative degradation of β-carotene. The In vitro antihemolytic effect of the plant extracts is determined (CrE, ChE, AcE and AqE). For each extract, four concentrations were tested: 10.59, 21.18, 42.37, 84.74 µg/ml. Vitamin C is used as a standard. Free-radical attack was measured by measuring the HT50 (Half-Hemolysis Time). The anti-inflammatory effect using PMA on mice of the methanolic extract (CrE) was evaluated. Results: The quantification of polyphenols and flavonoids showed that ethyl acetate extract (AcE) contains a higher amount of polyphenols. However, chloroform extract (ChE) presents a higher amount of flavonoids. AcE showed an important scavenging activity using the DPPH radical (IC50= 68.35 µg/ml). The results showed that AcE also exhibited very great inhibition on the oxidation of β-carotene/linoleic acid (84.33%). All extracts increased the HT50 values (Half-Hemolysis Time) in a dose-dependent manner. The three highest concentrations (21.18, 42.37 and 84.74 µg / ml) of ChE caused a very significant delay (p ≤ 0.001) of hemolysis compared to the negative control and the positive control "VIT C". The anti-inflammatory effect using PMA on mice showed that the methanolic extract (CrE) of AA reduced the weight of the ear edema. Conclusions: This plant has a strong pharmacological power, which supports its traditional medicinal use.


Sign in / Sign up

Export Citation Format

Share Document