Effect of Chronic Ethanol Dosing on Hepatic Triglyceride and Phospholipid Profile and Fatty Acids in the Guinea Pig

Alcohol ◽  
1999 ◽  
Vol 19 (3) ◽  
pp. 229-233 ◽  
Author(s):  
Nick Hidiroglou ◽  
Rene Madere
1998 ◽  
Vol 39 (6) ◽  
pp. 1274-1279
Author(s):  
Harrison S. Weisinger ◽  
Algis J. Vingrys ◽  
Lavinia Abedin ◽  
Andrew J. Sinclair
Keyword(s):  

1992 ◽  
Vol 288 (3) ◽  
pp. 965-968 ◽  
Author(s):  
K Badiani ◽  
X Lu ◽  
G Arthur

We have recently characterized lysophospholipase A2 activities in guinea-pig heart microsomes and postulated that these enzymes act sequentially with phospholipases A1 to release fatty acids selectively from phosphatidylcholine (PC) and phosphatidylethanolamine, thus providing an alternative route to the phospholipase A2 mode of release. In a further investigation of the postulated pathway, we have characterized the PC-hydrolysing phospholipase A1 in guinea-pig heart microsomes. Our results show that the enzyme may have a preference for substrates with C16:0 over C18:0 at the sn-1 position. In addition, although the enzyme cleaves the sn-1 fatty acid, the rate of hydrolysis of PC substrates with C16:0 at the sn-1 position was influenced by the nature of the fatty acid at the sn-2 position. The order of decreasing preference was C18:2 > C20:4 = C18:1 > C16:0. The hydrolyses of the molecular species were differentially affected by heating at 60 degrees C. An investigation into the effect of nucleotides on the activity of the enzyme showed that guanosine 5′-[gamma-thio]triphosphate (GTP[S]) inhibited the hydrolysis of PC by phospholipase A1 activity, whereas GTP, guanosine 5′-[beta-thio]diphosphate (GDP[S]), GDP, ATP and adenosine 5′-[gamma-thio]triphosphate (ATP[S]) did not affect the activity. The inhibitory effect of GTP[S] on phospholipase A1 activity was blocked by preincubation with GDP[S]. A differential effect of GTP[S] on the hydrolysis of different molecular species was also observed. Taken together, the results of this study suggest the presence of more than one phospholipase A1 in the microsomes with different substrate specificities, which act sequentially with lysophospholipase A2 to release linoleic or arachidonic acid selectively from PC under resting conditions. Upon stimulation and activation of the G-protein, the release of fatty acids would be inhibited.


2015 ◽  
Vol 112 (4) ◽  
pp. 1143-1148 ◽  
Author(s):  
Daniel F. Vatner ◽  
Sachin K. Majumdar ◽  
Naoki Kumashiro ◽  
Max C. Petersen ◽  
Yasmeen Rahimi ◽  
...  

A central paradox in type 2 diabetes is the apparent selective nature of hepatic insulin resistance—wherein insulin fails to suppress hepatic glucose production yet continues to stimulate lipogenesis, resulting in hyperglycemia, hyperlipidemia, and hepatic steatosis. Although efforts to explain this have focused on finding a branch point in insulin signaling where hepatic glucose and lipid metabolism diverge, we hypothesized that hepatic triglyceride synthesis could be driven by substrate, independent of changes in hepatic insulin signaling. We tested this hypothesis in rats by infusing [U-13C] palmitate to measure rates of fatty acid esterification into hepatic triglyceride while varying plasma fatty acid and insulin concentrations independently. These experiments were performed in normal rats, high fat-fed insulin-resistant rats, and insulin receptor 2′-O-methoxyethyl chimeric antisense oligonucleotide-treated rats. Rates of fatty acid esterification into hepatic triglyceride were found to be dependent on plasma fatty acid infusion rates, independent of changes in plasma insulin concentrations and independent of hepatocellular insulin signaling. Taken together, these results obviate a paradox of selective insulin resistance, because the major source of hepatic lipid synthesis, esterification of preformed fatty acids, is primarily dependent on substrate delivery and largely independent of hepatic insulin action.


1982 ◽  
Vol 60 (11) ◽  
pp. 1014-1017 ◽  
Author(s):  
L. Stuhne-Sekalec ◽  
N. Z. Stanacev

A convenient method for the enzymatic preparation of sn-3-[2-3H]phosphatidic acids carrying also 5-, 12-, or 16-nitroxide stearic acids, from sn-3-[2-3H]glycerophosphate and isolated guinea pig liver microsomes, is described in detail. The procedure allows a simultaneous preparation of three spin-labelled sn-3-[2-3H] phosphatidic acids of yields 3–3.5 μmol of each compound which is > 99% pure in respect to the radioactivity and which contains 25 mol% of spin-labelled fatty acids. These phosphatidic acids were approximately equally distributed between the primary and the secondary hydroxyl when 12- or 16-nitroxide stearic acids were used or predominantly (75%) associated with the secondary hydroxyl of sn-3-[2-3H]phosphatidic acid when 5-nitroxide stearic acid was present in the incubation mixture.


2000 ◽  
Vol 267 (12) ◽  
pp. 3633-3639 ◽  
Author(s):  
Mounia Alaoui El Azher ◽  
Nathalie Havet ◽  
Monique Singer ◽  
Claude Dumarey ◽  
Lhousseine Touqui

1993 ◽  
Vol 60 (1) ◽  
pp. 55-63 ◽  
Author(s):  
M. Dolores Pérez ◽  
Pilar Puyol ◽  
José Manuel Ena ◽  
Miguel Calvo

SummaryThe interaction of sheep, horse, pig, human and guinea-pig whey proteins with fatty acids has been studied. Using gel filtration and autoradiography, it was found that sheep β-lactoglobulin and serum albumin from all species had the ability to bind fatty acids in vitro. Sheep β-lactoglobulin, isolated from milk, had ˜ 0·5 mol fatty acids bound per mol monomer protein, and albumin from sheep, horse and pig contained ˜ 4·5, 2·9 and 4·7 mol fatty acids/mol protein respectively. However, β-lactoglobulin from horse and pig milk had neither fatty acids physiologically bound nor the ability to bind them in vitro. Albumin was the only whey protein detected with bound fatty acids in these species as well as in human and guinea pig. This suggests that the ability of ruminant β-lactoglobulin to bind fatty acids was not shared by the same protein of non-ruminants.


Sign in / Sign up

Export Citation Format

Share Document