Effect of basal lamina on progesterone production by chicken granulosa cells in vitro — influence of follicular development

Author(s):  
Elikplimi K. Asem ◽  
Susan R. Stingley-Salazar ◽  
J.Paul Robinson ◽  
John J. Turek
2019 ◽  
Vol 102 (2) ◽  
pp. 511-520
Author(s):  
Yanrong Kuai ◽  
Xiaobo Gao ◽  
Huixia Yang ◽  
Haiyan Luo ◽  
Yang Xu ◽  
...  

Abstract Pentachloronitrobenzene (PCNB) is an organochlorine fungicide widely used for crop production and has become an environmental concern. Little is known about the effect of PCNB on ovarian steroidogenesis and follicular development. We found that PCNB stimulated Star expression and progesterone production in cultured rat granulosa cells in a dose-dependent manner. PCNB activated mitogen-activated protein kinase (MAPK3/1) extracellulat regulated kinase (ERK1/2), thus inhibition of either protein kinase A (PKA) or MAPK3/1 signaling pathway significantly attenuated progesterone biosynthesis caused by PCNB, suggesting that PCNB induced progesterone production by activating the cyclic adenosine monophosphate (cAMP/PKA) and MAPK3/1 signaling pathways. Further investigation demonstrated that PCNB induced Star expression and altered MAPK3/1 signaling in ovary tissues of immature SD rats treated with PCNB at the dose of 100, 200, or 300 mg/kg by daily gavage for 7 days, while serum progesterone level was dose-dependently decreased. We demonstrated that PCNB exposure accelerated the recruitment of primordial follicles into the growing follicle pool in ovary tissues, accompanied by increased levels of anti-Mullerian hormone (AMH) in both ovary tissues and serum. Taken together, our data demonstrate for the first time that PCNB stimulated Star expression, altered MAPK3/1 signaling and progesterone production in vivo and in vitro, and accelerated follicular development with a concomitant increase in AMH in ovary tissues and serum. Our findings provide novel insight into the toxicity of PCNB to animal ovary function.


Reproduction ◽  
2014 ◽  
Vol 147 (1) ◽  
pp. 73-80 ◽  
Author(s):  
JongYeob Choi ◽  
MinWha Jo ◽  
EunYoung Lee ◽  
DooSeok Choi

In this study, we examined whether granulosa cell autophagy during follicular development and atresia was regulated by the class I phosphoinositide-3 kinase/protein kinase B (AKT) pathway, which is known to control the activity of mammalian target of rapamycin (mTOR), a major negative regulator of autophagy. Ovaries and granulosa cells were obtained using an established gonadotropin-primed immature rat model that induces follicular development and atresia. Autophagy was evaluated by measuring the expression level of microtubule-associated protein light chain 3-II (LC3-II) using western blots and immunohistochemistry. The activity of AKT and mTOR was also examined by observing the phosphorylation of AKT and ribosomal protein S6 kinase (S6K) respectively. After gonadotropin injection, LC3-II expression was suppressed and phosphorylation of AKT and S6K increased in rat granulosa cells. By contrast, gonadotropin withdrawal by metabolic clearance promoted LC3-II expression and decreased phosphorylation of AKT and S6K. In addition,in-vitroFSH treatment of rat granulosa cells also indicated inhibition of LC3-II expression accompanied by a marked increase in phosphorylation of AKT and S6K. Inhibition of AKT phosphorylation using AKT inhibitor VIII suppressed FSH-mediated phosphorylation of S6K, followed by an increase in LC3-II expression. Furthermore, co-treatment with FSH and AKT inhibitor increased the levels of apoptosis and cell death of granulosa cells compared with the single treatment with FSH. Taken together, our findings indicated that AKT-mediated activation of mTOR suppresses granulosa cell autophagy during follicular development and is involved in the regulation of apoptotic cell death.


1997 ◽  
Vol 18 (1) ◽  
pp. 27-35 ◽  
Author(s):  
G N Europe-Finner ◽  
E Cartwright ◽  
J Bellinger ◽  
H J Mardon ◽  
D H Barlow ◽  
...  

ABSTRACT Granulosa cells are essential for follicular development and corpus luteum formation and their functions are regulated by gonadotrophins through G protein-coupled receptors. The dominant second messenger pathway involves the stimulation of cyclic AMP formation by Gαs-linked receptors. In this paper we have investigated the expression of Gαs mRNA splice variants in relation to expression of Gαs protein isoforms in granulosa cells obtained from patients undergoing in vitro fertilization. We have carried out ribonuclease protection assays using cRNA riboprobes which are capable of detecting all Gαs mRNA isoforms as well as quantifying total amounts of Gαs mRNA. Granulosa cells express the message for Gαs-Large and Gαs-Small and the presence of two distinct protein products was confirmed by immunoblotting using the antibody RM/1. Moreover, the data show that a significant fraction of Gαs-Large and Gαs-Small mRNAs contain an extra CAG codon. This should generate proteins with an extra serine residue, resulting in Gαs variants with the consensus sequence of a protein kinase C phosphorylation site. These results highlight the possible interaction between different signalling pathways in the control of cAMP production and the need to investigate the relationship between Gαs variants and different adenylyl cyclase isozymes in patients with normal and abnormal ovarian function.


2013 ◽  
Vol 61 (1) ◽  
pp. 85-98 ◽  
Author(s):  
Anna Nynca ◽  
Dominika Słonina ◽  
Olga Jablońska ◽  
Barbara Kamińska ◽  
Renata Ciereszko

Daidzein, a phytoestrogen present in soybean products used in swine feed, has been demonstrated to affect both reproductive and endocrine functions. The aims of this study were to examine the in vitro effects of daidzein on (1) progesterone (P4) and oestradiol (E2) secretion by porcine luteinised granulosa cells harvested from medium follicles, and (2) the mRNA and protein expression of oestrogen receptors α and β (ERα and ERβ) in these cells. The influence of E2 on P4 secretion and ERα and ERβ expression in the granulosa cells of pigs was also investigated. It was found that daidzein inhibited progesterone secretion by luteinised granulosa cells isolated from medium follicles. In contrast, E2 did not affect progesterone production by these cells. Moreover, daidzein did not alter the granulosal secretion of E2. Both daidzein and E2 decreased mRNA expression of ERα in the cells examined. The expression of ERβ mRNA was not affected by daidzein but was inhibited by E2. ERα protein was not detected while ERβ protein was found in the nuclei of the cells. Daidzein and E2 upregulated the expression of ERβ protein in the cells. In summary, the phytoestrogen daidzein directly affected the porcine ovary by inhibiting progesterone production and increasing ERβ protein expression. Daidzein-induced changes in follicular steroidogenesis and granulosal sensitivity to oestrogens may disturb reproductive processes in pigs.


2002 ◽  
Vol 172 (1) ◽  
pp. 45-59 ◽  
Author(s):  
F Le Bellego ◽  
C Pisselet ◽  
C Huet ◽  
P Monget ◽  
D Monniaux

This study aimed to determine the physiological role of laminin (LN) and its receptor, alpha(6)beta(1) integrin, in controlling the functions of granulosa cells (GC) during follicular development in sheep ovary. Immunohistochemistry experiments showed the presence of increasing levels of LN (P<0.0001), and high levels of mature alpha(6)beta(1) integrin in GC layers of healthy antral follicles during the follicular and the preovulatory phases of the estrous cycle. In vitro, the addition of a function-blocking antibody raised against alpha(6) subunit (anti-alpha(6) IgG) to the medium of ovine GC cultured on LN impaired cell spreading (P<0.0001), decreased the proliferation rate (P<0.05) and increased the apoptosis rate (P<0.05). Furthermore, addition of anti-alpha(6) IgG enhanced estradiol (E2) secretion by GC in the presence or absence of follicle-stimulating hormone (FSH), luteinizing hormone or insulin-like growth factor-I in culture medium (P<0.0001), and inhibited progesterone (P4) secretion in basal conditions or in the presence of low (0.5 ng/ml) FSH concentrations only (P<0.0001). The anti-alpha(6) IgG effect was specific to an interaction of LN with alpha(6)beta(1) integrin since it was ineffective on GC cultured on heat-denatured LN, RGD (arginine-glycine-aspartic acid) peptides and non-coated substratum. Hence, this study established that alpha(6)beta(1) integrin 1) was expressed in GC of antral follicles, 2) mediated the actions of LN on survival, proliferation and steroidogenesis of GC, and 3) was able to dramatically modulate P4 and E2 secretion by GC in vitro. It is suggested that during the follicular and the preovulatory phases of the estrous cycle, the increasing levels of LN in GC of large antral follicles might support their final development to ovulation.


1991 ◽  
Vol 19 (02) ◽  
pp. 155-161 ◽  
Author(s):  
Satoshi Usuki

To examine the possible effects of Tokishakuyakusan (TS) on steroidogenesis by preovulatory follicles at the cell level, the expressed granulosa cells and remaining portion of follicles from pregnant mare's serum gonadotropin (PMS)-treated immature rats were incubated in vitro with increasing concentrations of TS for 3 h. TS significantly stimulated progesterone and estradiol-17 b production, with a predominant stimulation of progesterone, by the expressed granulosa cells, while testosterone production was not stimulated. In the remaining portion of the follicle, TS also significantly stimulated progesterone, testosterone and estradiol-17 b production. Similar to the effect produced by granulosa cells, the stimulatory effect of TS was stronger on progesterone than on testosterone and estradiol-17 b production. These results suggest that TS has a potent, direct stimulatory effect on steroidogenesis, especially progesterone production, by constituent tissue compartments of rat preovulatory follicles in vitro.


2002 ◽  
Vol 87 (7) ◽  
pp. 3441-3451 ◽  
Author(s):  
Ravid Sasson ◽  
Abraham Amsterdam

Human granulosa cells obtained from in vitro fertilization patients are highly luteinized, but can still be stimulated by LH/cAMP for production of progesterone. This stimulation involved enhancement of apoptosis. Incubation of the cells with dexamethasone (Dex) reduced the apoptotic incidence compared with nontreated cells and completely abolished the increase in apoptosis stimulated by LH or forskolin, concomitantly with a pronounced increase in progesterone production. Organization of the actin cytoskeleton was dramatically reduced after LH/forskolin stimulation. In contrast, Dex prevented disorganization of the actin filament networks. LH and forskolin also decreased the organization of gap junctions, which could be prevented by Dex. However, the intracellular level of connexin 43 was elevated in the presence of LH, forskolin, and Dex. Endogenous levels of the survival gene protein Bcl-2 were significantly elevated in all cultures treated with Dex compared with either nonstimulated cultures or cultures stimulated with LH and forskolin. Our data suggest that LH/cAMP can stimulate steroidogenesis even during the initial stage of apoptosis of human granulosa cells, whereas Dex, which blocks apoptosis, could further elevate progesterone production. Moreover, the integrity of gap junctions and the actin cytoskeleton as well as elevated levels of Bcl-2 may play an important role in the suppression of apoptosis of human granulosa cells.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Sujen Eleonora Santini ◽  
Giuseppina Basini ◽  
Simona Bussolati ◽  
Francesca Grasselli

Experimental evidence documents that nutritional phytoestrogens may interact with reproductive functions but the exact mechanism of action is still controversial. Since quercetin is one of the main flavonoids in livestock nutrition, we evaluated its possible effects on cultured swine granulosa cell proliferation, steroidogenesis, and redox status. Moreover, since angiogenesis is essential for follicle development, the effect of the flavonoid on Vascular Endothelial Growth Factor output by granulosa cells was also taken into account. Our data evidence that quercetin does not affect granulosa cell growth while it inhibits progesterone production and modifies estradiol production in a dose-related manner. Additionally, the flavonoid interferes with the angiogenic process by inhibiting VEGF production as well as by altering redox status. Since steroidogenesis and angiogenesis are strictly involved in follicular development, these findings appear particularly relevant, pointing out a possible negative influence of quercetin on ovarian physiology. Therefore, the possible reproductive impact of the flavonoid should be carefully considered in animal nutrition.


Reproduction ◽  
2010 ◽  
Vol 139 (2) ◽  
pp. 309-318 ◽  
Author(s):  
R J Rodgers ◽  
H F Irving-Rodgers

Follicle classification is an important aid to the understanding of follicular development and atresia. Some bovine primordial follicles have the classical primordial shape, but ellipsoidal shaped follicles with some cuboidal granulosa cells at the poles are far more common. Preantral follicles have one of two basal lamina phenotypes, either a single aligned layer or one with additional layers. In antral follicles <5 mm diameter, half of the healthy follicles have columnar shaped basal granulosa cells and additional layers of basal lamina, which appear as loops in cross section (‘loopy’). The remainder have aligned single-layered follicular basal laminas with rounded basal cells, and contain better quality oocytes than the loopy/columnar follicles. In sizes >5 mm, only aligned/rounded phenotypes are present. Dominant and subordinate follicles can be identified by ultrasound and/or histological examination of pairs of ovaries. Atretic follicles <5 mm are either basal atretic or antral atretic, named on the basis of the location in the membrana granulosa where cells die first. Basal atretic follicles have considerable biological differences to antral atretic follicles. In follicles >5 mm, only antral atresia is observed. The concentrations of follicular fluid steroid hormones can be used to classify atresia and distinguish some of the different types of atresia; however, this method is unlikely to identify follicles early in atresia, and hence misclassify them as healthy. Other biochemical and histological methods can be used, but since cell death is a part of normal homoeostatis, deciding when a follicle has entered atresia remains somewhat subjective.


Sign in / Sign up

Export Citation Format

Share Document