Preliminary study of argon fluoride (193 nm) excimer laser trabeculectomy Scanning electron microscopy at five months

1990 ◽  
Vol 16 (5) ◽  
pp. 617-620 ◽  
Author(s):  
D. Aron-Rosa ◽  
A. Maden ◽  
S. Ganem ◽  
B. Aron ◽  
M. Gross
2019 ◽  
Vol 105 (5) ◽  
pp. 404-410 ◽  
Author(s):  
Federica Grosso ◽  
Alessandro Croce ◽  
Roberta Libener ◽  
Narciso Mariani ◽  
Massimo Pastormerlo ◽  
...  

Purpose: To assess whether asbestos fibers may be observed in liver tissue of patients with cholangiocarcinoma (CC) with environmental or working asbestos exposure. Methods: Detection of fibers was performed directly on histologic sections of liver from 7 patients with CC using optical microscope and variable pressure scanning electron microscopy equipped with energy-dispersive spectroscopy (VP-SEM/EDS). All patients were from Casale Monferrato, Italy, a highly asbestos-polluted town. Due to ethical constraints, observers were blinded to patients’ clinical features. Results: Fibers/bundles of fibers of chrysotile were detected in 5 out of 7 patients (71%). The boundary between healthy and neoplastic tissue or the fibrocollagen tissue produced by the neoplasia were identified as areas of fiber incorporation. Conclusions: This study is the first report about the detection of chrysotile asbestos fibers in the liver of patients with CC. Further studies on larger cohorts are needed to corroborate our preliminary findings.


Author(s):  
Long-Sun Chao ◽  
Yu-Ru Chen ◽  
Hsiun-Chang Peng

In this work, the excimer-laser-induced crystallization of amorphous silicon (a-Si) films was investigated numerically and experimentally. The basic structure is an a-Si film on a glass substrate. This study had investigated the effects of irradiating energy density on the grain size and structure by scanning electron microscopy (SEM). In the surface microstructure analysis of the laser-irradiated area, the critical fluences (full-melt threshold, FMT) between the partial melting and complete melting regimes can be found by applying scanning electron microscopy. An efficient two-dimensional numerical model is carried out to predict the critical fluences (FMT) and the transient temperature distribution during the laser processing. Numerical analysis of the temperature profile showed that a temperature drop occurred at the center of melted zone immediately after laser irradiation. From the analysis of temperature responses, the FMT obtained from the simulation results of the proposed model agree fairly well with those from the experimental data reported in the literature and acquired in this research. Furthermore, the grain growth of the poly-Si was studied by the grain observation of the cross section and its corresponding numerical simulation. The cross-sectional grain structure of the resulting poly-Si film was observed with different laser intensities. The grain sizes decreased with increasing irradiating energy intensity in the partial melting regime. From the surface observation, the grain distribution was uniform and most of the grain has a single crystallographic direction. The average grain size had the biggest value at FMT. But some super large grains occurred and combined with more than one crystallographic direction when the film obtained sufficiently high energy intensities that was closed or over the FMT. The grain distribution was not uniform. The super large gain was around the small grain size. The modified cellular automation method (MCA) was used to simulate the grain growth two-dimensionally and explain the grain development during the solidification process. The grain morphology of the numerical simulation was satisfied with the experimental observation. From the analysis of the grain growth, this model was able to simulate the undercooling effect and grain growth phenomenon and fitted for the experimental grain observation in the excimer-laser-induced crystallization.


2014 ◽  
Vol 487 ◽  
pp. 98-101 ◽  
Author(s):  
Jun Hua Wang ◽  
Gang Huang ◽  
Yong Tang Jia

Anti-mosquito nanocapsules were prepared using the copolymer of styrene (ST) and ethyl acrylate (EA) as wall and deet as core by micro-emulsion polymerization. The mean particle size of nanocapsules was about 424nm and the loading of deet was about 73% under the conditions of 2% SDS as emulsifier and the ratio of core/wall 1:1. Scanning electron microscopy and laser particle size analyzer were employed to characterize the nanocapsules.


2021 ◽  
Vol 1 (1) ◽  
pp. 510-513
Author(s):  
Ali Munawar ◽  
Djoko Mulyanto ◽  
R. R. Dina Asrifah

Zeolite is one of important non-metallic mineral deposites in Indonesia. It has been used for various purposes, including as an adsobent in environmental protection, industry, and agriculture. The most important characteristics of zeolit to be an adsorbent is its surface area and crystal structure. To optimally use zeolite as an adsorbent, it is necessary to understand its physical characteristics. This preliminary study was aimed to characterize physical properties of a natural zeolite obtained from Tasikmalaya, West Java, Indonesia. The zeolite material was crushed into <0.5 mm diameter and divided into two sets of samples. One set of samples was heated in a muffle furnace at 250 oC for two hours and the other set was left untreated. All samples were then observed using a Scanning Electron Microscopy (SEM). The SEM micrographs showed rough and porous structure and defined crystallinity of the zeolite. Thermal treatment at 250 oC increased zeolite crystallinity. These results confirm that this natural zeolite is potential to be used as an adsorbent to remove dissolved metals from acid mine drainage.


1993 ◽  
Vol 13 (3) ◽  
pp. 353-362 ◽  
Author(s):  
Joseph Neev ◽  
Adam Stabholtz ◽  
Lih-Huei L. Liaw ◽  
Mahmoud Torabinejad ◽  
Jack T. Fujishige ◽  
...  

Author(s):  
Yu Jia Ma ◽  
Nicole S. Bryce ◽  
Renee M. Whan ◽  
Lucy Xiao ◽  
Kai Li ◽  
...  

Tissue engineering will play an increasingly vital role in cancer research. Provision of biomimetic microenvironment systems for in vitro cancer models can be addressed in part by utilizing thick 3D scaffolds with high interconnective porosity . This approach gives rise to new analytical challenges and opportunities. In this preliminary study, Variotis™ synthetic scaffolds of high interconnected porosity and hierarchical structure were used. An effective macroscopic porosity of 94.3 ±1.74 vol% was attained by using microCT and finite element methods. The actual porosity was determined to be 94.6±0.29 vol%. Scaffolds were compressed in a customized jig to thicknesses of 99.5 mm, 74.6 mm, 46.3 mm (±0.5% tolerance) and then annealed to set respective porosities of 94.3 vol%, 93.2 vol%, 89.5 vol% (±1.5% tolerance). Scaffolds were then sectioned to 2mm thickness. DLD-1 colon cancer cells were grown on 3D scaffolds of three specified porosities for varying periods of time then imaged using confocal and scanning electron microscopy methods. Hoechst staining resulted with minimal scaffold autofluoresence while autofluoresence exceeded useful limits when used in conjunction with Alexa488-phalloidin under argon laser excitation in confocal microscopy. Using Hoechst staining, DLD-1 cells (nuclei) were observed to readily attach and proliferate on Variotis™ scaffolds. Normal DLD-1 cell morphologies were evident using scanning electron microscopy. The high interconnected porosity of the scaffolds allowed cells to be observed deep within scaffolds. Scaffolds remained structurally stable and unified throughout all culture experiments and provided ease of handling during cell culture and microscopy.


Sign in / Sign up

Export Citation Format

Share Document