Mechanical properties of several nickel-titanium alloy wires in three-point bending tests

1999 ◽  
Vol 115 (4) ◽  
pp. 390-395 ◽  
Author(s):  
Hirokazu Nakano ◽  
Kazuro Satoh ◽  
Robert Norris ◽  
Tomoaki Jin ◽  
Tetsuya Kamegai ◽  
...  
2017 ◽  
Vol 90 (3) ◽  
pp. 313-326
Author(s):  
Silvia Izabella Pop ◽  
Mircea Dudescu ◽  
Violeta Valentina Merie ◽  
Mariana Pacurar ◽  
Cristina Dana Bratu

Background and aims. This experimental study mainly aims at comparing the most important mechanical properties of the new orthodontic archwires, those immersed in fluorinated solution, the as-retrieved ones and  the intra-oral used ones.Methods. A total of 270 arch wires were tested, using tensile testing and three-point bending tests. The tested archwires were made of Stainless Steel, Nickel Titanium, Beta-Titanium and physiognomic covered Nickel Titanium. The tested archwires were subjected to three types of treatments: immersion into fluorinated solution, immersion into carbonated drinks and intra-oral use.Results. The immersion caused variations of the activation and deactivation forces of all arch wires. The most affected arch wires, in terms of bending characteristics,  were the intra-oral used ones.Conclusions. The alteration of mechanical properties of the orthodontic arch wires by their immersion into fluorinated solutions and soft drinks could not be statistically demonstrated.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5720 ◽  
Author(s):  
Vicente Colomer-Romero ◽  
Dante Rogiest ◽  
Juan Antonio García-Manrique ◽  
Jose Enrique Crespo

Bio- and green composites are mainly used in non-structural automotive elements like interior panels and vehicle underpanels. Currently, the use of biocomposites as a worthy alternative to glass fibre-reinforced plastics (GFRPs) in structural applications still needs to be fully evaluated. In the current study, the development of a suited biocomposites started with a thorough review of the available raw materials, including both reinforcement fibres and matrix materials. Based on its specific properties, hemp appeared to be a very suitable fibre. A similar analysis was conducted for the commercially available biobased matrix materials. Greenpoxy 55 (with a biocontent of 55%) and Super Sap 100 (with a biocontent of 37%) were selected and compared with a standard epoxy resin. Tensile and three-point bending tests were conducted to characterise the hemp-based biocomposite.


2014 ◽  
Vol 1025-1026 ◽  
pp. 330-335 ◽  
Author(s):  
Surachai Dechkunakorn ◽  
Niwat Anuwongnukroh ◽  
Nuntinee Nanthavannich ◽  
Subongkoch Tongkoom

Objectives: The aim of this study was to investigate and to compare the deactivation force, deactivation length and superelasticity in horizontal and vertical directions of Nickel-titanium (NiTi) orthodontic archwires made by 3 different manufactures. Materials and methods: The archwires tested were NiTi-OR (Ormco), NiTi-GH (G&H) and NiTi-H (Highland) and were 0.016 x 0.022 inch2in cross-section and 25 mm in length. The study analysed load-deflection curves from three-point bending tests performed for each type of NiTi wire in vertical (occluso-gingival) direction (0.022” in horizontal dimension) and horizontal (bucco-lingual) direction (0.016” in vertical dimension) at oral temperature (37±10oC). Statistical Analysis: Descriptive analysis and Kruskal Wallis test were performed to assess differences in deactivation force, deactivation length and superelasticity among the three brands. A p<0.05 was considered as significant. Results: The deactivation forces ranked from low to high were NiTi-GH, NiTi-OR and NiTi-H, 2.09, 2.57 and 2.90 N, respectively in horizontal dimension (occluso-gingival direction) and 3.04, 3.54 and 3.62 N in vertical dimension (bucco-lingual direction), respectively. For the deactivation length, ranking from long to short were NiTi-GH, NiTi-OR and NiTi-H, 1.08, 1.02 and 0.63 mm in horizontal dimension and 1.63, 1.46 and 1.13 mm in vertical dimension, respectively. In regards to superelasticity, NiTi-OR showed the highest superelasticity, 15.37 in horizontal and 9.68 in vertical dimension, followed by NiTi-GH, 9.51 for horizontal and 6.40 for vertical dimension and NiTi-H, 4.12 for horizontal dimension and 2.96 for vertical dimension. Conclusion: Deactivation force was higher in vertical than horizontal dimension and deactivation length was longer in vertical than horizontal dimension. However, the superelasticity was higher in horizontal than vertical dimension, except NiTi-H. The high priced NiTi wire (NiTi-OR) had the most superelasticity following by medium (NiTi-GH) and low priced wires (NiTi H).


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3158 ◽  
Author(s):  
Santiago Cano ◽  
Tanja Lube ◽  
Philipp Huber ◽  
Alberto Gallego ◽  
Juan Alfonso Naranjo ◽  
...  

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.


1991 ◽  
Vol 100 (5) ◽  
pp. 428-435 ◽  
Author(s):  
Sunil Kapila ◽  
Gary W. Reichhold ◽  
R. Scott Anderson ◽  
Larry G. Watanabe

2013 ◽  
Vol 39 (4) ◽  
pp. 516-520 ◽  
Author(s):  
Hélio P. Lopes ◽  
Thaiane Gambarra-Soares ◽  
Carlos N. Elias ◽  
José F. Siqueira ◽  
Inês F.J. Inojosa ◽  
...  

2021 ◽  
Vol 8 (12) ◽  
pp. 218
Author(s):  
Alessio Zanza ◽  
Maurilio D’Angelo ◽  
Rodolfo Reda ◽  
Gianluca Gambarini ◽  
Luca Testarelli ◽  
...  

Since the introduction of Nickel-Titanium alloy as the material of choice for the manufacturing of endodontic rotary instruments, the success rate of the root canal therapies has been significantly increased. This success mainly arises from the properties of the Nickel-Titanium alloy: the biocompatibility, the superelasticity and the shape memory effect. Those characteristics have led to a reduction in time of endodontic treatments, a simplification of instrumentation procedures and an increase of predictability and effectiveness of endodontic treatments. Nevertheless, the intracanal separation of Nickel-Titanium rotary instruments is still a major concern of endodontists, with a consequent possible reduction in the outcome rate. As thoroughly demonstrated, the two main causes of intracanal separation of endodontic instruments are the cyclic fatigue and the torsional loads. As results, in order to reduce the percentage of intracanal separation research and manufacturers have been focused on the parameters that directly or indirectly influence mechanical properties of endodontic rotary instruments. This review describes the current state of the art regarding the Nickel-Titanium alloy in endodontics, the mechanical behavior of endodontic rotary instruments and the relative stresses acting on them during intracanal instrumentation, highlighting the limitation of the current literature.


Author(s):  
Haris Stamatopoulos ◽  
Francesco Mirko Massaro ◽  
Jalal Qazi

AbstractAt present, the mechanical properties of laterally loaded threaded fasteners with large diameters embedded in timber elements remain unknown. An experimental study of laterally loaded threaded rods with wood screw threads embedded perpendicular to grain in softwood elements (spruce and pine glulam and spruce LVL) is presented in this paper. Embedment tests with the load acting parallel and perpendicular to grain were carried out and the embedment strength and stiffness were quantified. For some test series, the experimental embedment strengths were lower compared to the predictions according to Eurocode 5 in terms of both mean and characteristic values. This finding indicates that the predictions by Eurocode 5 are not always conservative. To investigate the effect of the thread, additional series of embedment tests were carried out with smooth dowels featuring a diameter approximately equal to the core diameter of the threaded rods. Finally, the yielding moment of threaded rods was quantified based on a series of three-point bending tests of threaded rods. The experimentally determined yielding moment was significantly higher than the prediction of Eurocode 5.


Author(s):  
K. J. Chun ◽  
C. Y. Kim ◽  
J. Y. Lee

Dental restorative materials including amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy are used to reconstruct damaged teeth, as well as to recover their function. In this study, the mechanical properties of various dental restorative materials were determined using test specimens of identical shape and dimension under the same three-point bending test condition, and the test results were compared to enamel and dentin. The maximum bending force of enamel and dentin was 6.9 ± 2.1 N and 39.7 ± 8.3 N, and the maximum bending deflection was 0.12 ± 0.02 mm and 0.25 ± 0.03 mm, respectively. The maximum bending force of amalgam, dental ceramic, gold alloy, dental resin, zirconia, and titanium alloy were 1.9 ± 0.4 N, 2.7 ± 0.6 N, 66.9 ± 4.1 N, 2.7 ± 0.3 N, 19.0 ± 2.0 N, and 121.3 ± 6.8 N, respectively, and the maximum bending deflection was 0.20 ± 0.08 mm, 0.28 ± 0.07 mm, 2.53 ± 0.12 mm, 0.37 ± 0.05 mm, 0.39 ± 0.05 m, and 2.80 ± 0.08 mm, respectively. The dental restorative materials that possessed greater maximum bending force than that of enamel were gold alloy, zirconia, and titanium alloy. Gold alloy and titanium alloy had greater maximum bending force than dentin. The dental restorative materials that possessed greater maximum bending deflection than that of enamel were all of the dental restorative materials, and the dental restorative materials that possessed greater maximum bending deflection than that of dentin were all of the dental restorative materials except amalgam. The appropriate dental restorative materials for enamel are gold alloy and zirconia and for dentin is gold alloy concerning the maximum bending force and the maximum bending deflection. These results are expected to aid dentists in their choice of better clinical treatment and to contribute to the development of dental restorative materials that possess properties that are most similar to the mechanical properties of dental hard tissue.


2012 ◽  
Vol 567 ◽  
pp. 146-149 ◽  
Author(s):  
Xue Mei Fan ◽  
Jian Feng Wang ◽  
Cheng Jin Duan ◽  
Xiang Xin Xia ◽  
Zhao Hui Wang

In order to analyze the mechanical properties of Carbon/epoxy facings-Aluminum honeycomb sandwich structure, we simulated panels of different layers and core thickness using ABAQUS finite element analysis program. And three-point bending tests and shear tests were made on the same panels using electronic universal testing machine. In addition, we also made the same three-point bending tests on steel tubes to get a comparison with honeycomb sandwich panels. It could be seen that, the simulated results were basically identified with experimental results. The results indicated that core thickness played an important role in the panels’ bulking modulus, and number of carbon fiber layers decided the shear strength. As a whole, honeycomb sandwich structure was suitable for use in the car body with good mechanical properties under premise of lighter.


Sign in / Sign up

Export Citation Format

Share Document