screw threads
Recently Published Documents


TOTAL DOCUMENTS

404
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 11 (21) ◽  
pp. 9901
Author(s):  
Ming-Kai Hsieh ◽  
Yun-Da Li ◽  
Mu-Yi Liu ◽  
Chen-Xue Lin ◽  
Tsung-Ting Tsai ◽  
...  

The proper screw geometry and pilot-hole size remain controversial in current biomechanical studies. Variable results arise from differences in specimen anatomy and density, uncontrolled screw properties and mixed screw brands, in addition to the use of different tapping methods. The purpose of this study was to evaluate the effect of bone density and pilot-hole size on the biomechanical performance of various pedicle screw geometries. Six screw designs, involving three different outer/inner projections of screws (cylindrical/conical, conical/conical and cylindrical/cylindrical), together with two different thread profiles (square and V), were examined. The insertional torque and pullout strength of each screw were measured following insertion of the screw into test blocks, with densities of 20 and 30 pcf, predrilled with 2.7-mm/3.2-mm/3.7-mm pilot holes. The correlation between the bone volume embedded in the screw threads and the pullout strength was statistically analyzed. Our study demonstrates that V-shaped screw threads showed a higher pullout strength than S-shaped threads in materials of different densities and among different pilot-hole sizes. The configuration, consisting of an outer cylindrical shape, an inner conical shape and V-shaped screw threads, showed the highest insertional torque and pullout strength at a normal and higher-than-normal bone density. Even with increasing pilot-hole size, this configuration maintained superiority.


Author(s):  
Haris Stamatopoulos ◽  
Francesco Mirko Massaro ◽  
Jalal Qazi

AbstractAt present, the mechanical properties of laterally loaded threaded fasteners with large diameters embedded in timber elements remain unknown. An experimental study of laterally loaded threaded rods with wood screw threads embedded perpendicular to grain in softwood elements (spruce and pine glulam and spruce LVL) is presented in this paper. Embedment tests with the load acting parallel and perpendicular to grain were carried out and the embedment strength and stiffness were quantified. For some test series, the experimental embedment strengths were lower compared to the predictions according to Eurocode 5 in terms of both mean and characteristic values. This finding indicates that the predictions by Eurocode 5 are not always conservative. To investigate the effect of the thread, additional series of embedment tests were carried out with smooth dowels featuring a diameter approximately equal to the core diameter of the threaded rods. Finally, the yielding moment of threaded rods was quantified based on a series of three-point bending tests of threaded rods. The experimentally determined yielding moment was significantly higher than the prediction of Eurocode 5.


2021 ◽  
Vol 11 (16) ◽  
pp. 7611
Author(s):  
Martin Stein ◽  
Frank Keller ◽  
Anita Przyklenk

We propose a unified theory for the metrological treatment of helical machine elements such as cylindrical and conical gears, worms, and screw threads. The main idea is to introduce a universal 3D geometry model for threaded components that provides for distinct parameterization using a unique set of geometry parameters and that offers and a functional description of the transverse profile. Using modern 3D coordinate measuring technology, a holistic evaluation algorithm yields the actual geometry as the result of a high dimensional best-fit procedure and form deviations as corresponding residuals. All determinants and evaluation parameters can then be calculated from the set of actual geometry parameters. By applying certain constraints to the model to be fitted, the novel method can be reduced to the established 2D methods and hence meets demands for the comparison of the two procedures. The results of the novel approach have proven to be very stable and they enable the evaluation of areal measurements with no loss of information.


Author(s):  
Fatima Isiaka ◽  
Awwal M. Adamu ◽  
Salihu A. Abdulkarim ◽  
Abdullahi Salihu

In most mechanical systems, screw threads serve three main basic purposes: (i) to transmit power, (ii) to provide a clamping force, and finally (iii) to restrict or control motion. This chapter demonstrates the effects of friction and behavior which can occur in a bolted fastening (screw thread) for advanced design purposes. To model this behavior, other control components are attached to the bolted screw. The bolt preload is applied with a predetermined torque. For this case the preload depends on the friction under the head and in the thread. The friction prevents the loosing of the bolted fastening. This effect is termed as self-locking effect. We designed an algorithm that reproduces an exemplary simulation scenario, which determines friction and its effect on thread angle based on the strength of the coefficient of friction at a specific tension or clamp load value using the system-of-system approach. The result shows specific behavior on both the motion in threads and drive screw with predetermined torque. The chapter is limited to creating a simple simulation environment to demonstrate the effects.


Author(s):  
Vahid Pouyafar ◽  
Ramin Meshkabadi ◽  
Amir Hooman Sadr Haghighi ◽  
Ali Navid

One of the essential aspects of the mini-implant’s successful application is its stability after being installed in the bone. The stability of the mini-implant affected the most by its geometry. In the present research, the effect of the geometry-related parameters of the mini-implant on its lateral displacement is investigated by Finite Element (FE) modeling using ABAQUS software. The parameters studied include length, diameter, pitch, and depth of the screw threads; besides, length and angle of the conical section. The Taguchi method was used to prevent many experiments. The mesh convergence tests and experimental tests confirmed the FE model quantitatively and qualitatively. Mean of means and variance analysis determined the parameters significance and their contribution on the stability. The screw diameter and length have the most contribution to mini-implant’ displacement. The effect of screw pitch was less than that for length and diameter. The conical section improved the initial stability by creating compressive stress and additional friction in its surrounding bone. No significant effects on the stability of the mini-implant have been observed for the non-threaded part. By examining the effect of thread depth on its stability by defining the ratio of thread depth to the internal diameter and to maintain the strength of the screw the optimal value for internal to external ratio is set at about 0.7.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1728
Author(s):  
Henning Staedt ◽  
Diana Heimes ◽  
Karl M. Lehmann ◽  
Peter Ottl ◽  
Monika Bjelopavlovic ◽  
...  

(1) Background: Primary stability—one fundamental criterion for the success of dental implants—is influenced by implant geometry even if the effect of apical shape modifications on implant primary stability has not yet been examined. Therefore, the aim of the ex vivo study was to compare primary stability of implants differing in apically located screw threads (J-line) or a flat tip (K-line) only. (2) Methods: 28 implants of each group of the same diameter (4.3 mm) were randomly inserted into porcine bone blocks. The first group (9, 11 and 13 mm) was inserted into “hard”, the second (11 mm) into “soft” bone, here using a normal and an undersized drilling protocol. Insertion torque (Ncm), Periotest® value, resonance frequency (implant stability coefficient, ISQ) and push-out force (N) were measured. (3) Results: In “hard” bone, primary stability increased with increasing length in both groups but it was significantly higher in J-line (p < 0.03). An undersized preparation of the implant bed in “soft” bone resulted in a significant increase in primary stability in both groups. Here, J-line also showed a significantly increased primary stability when compared to equally prepared K-line (insertion torque: 37 Ncm vs. 26 Ncm; Periotest®: −6.5 vs. −4.3; push-out force: 365 N vs. 329 N; p < 0.05 each). (4) Conclusions: Primary stability is significantly higher with increasing implant length and apically located screw threads as well as with undersized drilling protocols. When preparing the implant site and subsequently selecting the implant system, modifying factors such as implant geometry (also at the tip) should be taken into account.


Sign in / Sign up

Export Citation Format

Share Document