Design of a stationary guide vane swirl air cleaner

1999 ◽  
Vol 12 (11) ◽  
pp. 1375-1392 ◽  
Author(s):  
L.A.C. Klujszo ◽  
P.K. Songfack ◽  
M. Rafaelof ◽  
R.K. Rajamani
Keyword(s):  
2013 ◽  
pp. 36-41
Author(s):  
Olivier Brugière ◽  
Guillaume Balarac ◽  
Christophe Corre ◽  
Olivier Métais ◽  
Emmanuel Flores ◽  
...  

2015 ◽  
Vol 14 (4) ◽  
pp. 253-262
Author(s):  
Ho-Hyun Kim ◽  
◽  
Chan-Jung Park ◽  
Jong-Cheol Kim ◽  
Yong-Jin Lee ◽  
...  

2019 ◽  
Vol 18 (1) ◽  
pp. 76-80 ◽  
Author(s):  
Kichul Kim ◽  
Pil-Ju Park ◽  
Soomi Eo ◽  
Seungmi Kwon ◽  
Kwangrae Kim ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 266
Author(s):  
Md Rakibuzzaman ◽  
Sang-Ho Suh ◽  
Hyoung-Ho Kim ◽  
Youngtae Ryu ◽  
Kyung Yup Kim

Discharge water from fish farms is a clean, renewable, and abundant energy source that has been used to obtain renewable energy via small hydropower plants. Small hydropower plants may be installed at offshore fish farms where suitable water is obtained throughout the year. It is necessary to meet the challenges of developing small hydropower systems, including sustainability and turbine efficiency. The main objective of this study was to investigate the possibility of constructing a small hydropower plant and develop 100 kW class propeller-type turbines in a fish farm with a permanent magnet synchronous generator (PMSG). The turbine was optimized using a computer simulation, and an experiment was conducted to obtain performance data. Simulation results were then validated with experimental results. Results revealed that streamlining the designed shape of the guide vane reduced the flow separation and improved the efficiency of the turbine. Optimizing the shape of the runner vane decreased the flow rate, reducing the water power and increasing the efficiency by about 5.57%. Also, results revealed that tubular or cross-flow turbines could be suitable for use in fish farm power plants, and the generator used should be waterproofed to avoid exposure to seawater.


Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 63
Author(s):  
Sondre Norheim ◽  
Shokri Amzin

Gas turbine performance is closely linked to the turbine inlet temperature, which is limited by the turbine guide vanes ability to withstand the massive thermal loads. Thus, steam cooling has been introduced as an advanced cooling technology to improve the efficiency of modern high-temperature gas turbines. This study compares the cooling performance of compressed air and steam in the renowned radially cooled NASA C3X turbine guide vane, using a numerical model. The conjugate heat transfer (CHT) model is based on the RANS-method, where the shear stress transport (SST) k−ω model is selected to predict the effects of turbulence. The numerical model is validated against experimental pressure and temperature distributions at the external surface of the vane. The results are in good agreement with the experimental data, with an average error of 1.39% and 3.78%, respectively. By comparing the two coolants, steam is confirmed as the superior cooling medium. The disparity between the coolants increases along the axial direction of the vane, and the total volume average temperature difference is 30 K. Further investigations are recommended to deal with the local hot-spots located near the leading- and trailing edge of the vane.


Aerospace ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 172
Author(s):  
Hengtao Shi

Recently, a new type of low-loss variable inlet guide vane (VIGV) was proposed for improving a compressor’s performance under off-design conditions. To provide more information for applications, this work investigated the effect of the Reynolds number and clearance flow on the aerodynamic characteristics of this new type of VIGV. The performance and flow field of two representative airfoils with different chord Reynolds numbers were studied with the widely used commercial software ANSYS CFX after validation was completed. Calculations indicate that, with the decrease in the Reynolds number Rec, the airfoil loss coefficient ω and deviation δ first increase slightly and then entered a high growth rate in a low range of Rec. Afterwards, a detailed boundary-layer analysis was conducted to reveal the flow mechanism for the airfoil performance degradation with a low Reynolds number. For the design point, it is the appearance and extension of the separation region on the rear portion; for the maximum incidence point, it is the increase in the length and height of the separation region on the former portion. The three-dimensional VIGV research confirms the Reynolds number effect on airfoils. Furthermore, the clearance leakage flow forms a strong stream-wise vortex by injection into the mainflow, resulting in a high total-pressure loss and under-turning in the endwall region, which shows the potential benefits of seal treatment.


2021 ◽  
Vol 9 (8) ◽  
pp. 831
Author(s):  
Zhuangzhuang Sun ◽  
Jie Yu ◽  
Fangping Tang

In order to study the influence of the position of the bulb on the hydraulic performance of asubmersible tubular pump device, based on a large-scale pumping station, two schemes—involving a front-mounted bulb and a rear-mounted bulb, respectively—were designed. The front-mounted scheme uses the GL-2008-03 hydraulic model and its conventional guide vane, while the rearmounted scheme uses the optimized design of a diffuser vane. The method of combining numerical simulation and experimental testing was used to analyze the differences between the external and internal characteristics of the two schemes. The results show that, under the condition of reasonable diffusion guide vane design, the efficiency under the rear-mounted scheme is higher than that under the front-mounted scheme, where the highest efficiency difference is about 1%. Although the frontmounted bulb scheme reduces the hydraulic loss of the bulb section, the placement of the bulb on the water inlet side reduces the flow conditions of the impeller. Affected by the circulation of the guide vane outlet, the hydraulic loss of the outlet channel is greater than the rear-mounted scheme. The bulb plays a rectifying function when the bulb is placed behind, which greatly eliminates the annular volume of the guide vane outlet, and the water outlet channel has a smaller hydraulic loss. In the front-mounted scheme, the water flow inside the outlet channel squeezes to the outer wall, causing higher entropy production near the outer wall area. The entropy production of the rear-mounted scheme is mainly in the bulb section and the bulb support. This research can provide reference for the design and form selection of a submersible tubular pump device, which has great engineering significance.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Zhenlin Li ◽  
Xin Zhou ◽  
Zizhe Wang

In order to effectively improve hydraulic performance of centrifugal pump on off-conditions, the hydraulic design of inlet guide vane (IGV) was completed by adopting two dimensional theory in-house code based on one kind of IS series of centrifugal pump, which can achieve pre-whirl regulation of centrifugal pump. During design process the trailing edge of vane is assumed as equal velocity moment condition, and the distribution of vane setting angle along meridional streamline is also given as a quartic function firstly, the camber line is then drawn by point-by-point integration method and thickened at both sides along circumferential direction. With local vortex dynamics diagnosis theory, the optimal improvement of vane space shape can be finished by adjusting the design parameters of vane setting angle distribution coefficient ap. The full flow passage numerical simulations of centrifugal pump with IGV device are completed to analyze the influence of pre-whirl regulation on hydraulic performance of centrifugal pump under various pre-whirl angles. The results show that the pre-whirl regulation can improve the hydraulic performance of centrifugal pump on off-conditions. Under the positive pre-whirl regulation conditions, the best efficient point shift to small flow rate zone, and under the negative pre-whirl regulation conditions it moves to large flow rate zone. Compared with the pump without IGV device at the same flow rate condition of 0.8Q (Q the design flow rate), the hydraulic efficiency of centrifugal pump with IGV device improves obviously and reaches up to 1.43%. Meanwhile compared with that installed with the straight vanes designed based on the traditional theory, the inner flow field of centrifugal pump with the designed vanes improves and the overall hydraulic efficiency of centrifugal pump is somewhat increased.


Sign in / Sign up

Export Citation Format

Share Document