scholarly journals Quantum Mach effect by Sagnac phase shift on Cooper pairs in rf-SQUID

2000 ◽  
Vol 336 (1-2) ◽  
pp. 27-32
Author(s):  
D. Fargion ◽  
L. Chiatti ◽  
A. Aiello
Author(s):  
F. Hasselbach ◽  
M. Nicklaus

After the first matter wave version of Sagnac’s classical light optical experiment of 1913, performed by Mercereau and Zimmermann with electron Cooper pairs in 1965, and the Sagnac experiment realized with neutrons by Werner et al. in 1979 , we report here on the first observation of the rotational phase shift of electron waves in vacuum.Theory. The Sagnac effect links classical physics, quantum physics and relativity. Using the special theory of relativity it can be derived that coherent waves, e.g. of light, neutrons or electrons, travelling around a finite area A experience a relative phaseshift


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1710 ◽  
Author(s):  
Michal Skalský ◽  
Zdeněk Havránek ◽  
Jiří Fialka

This paper presents a simple method for compensating the Sagnac phase shift in an interferometric fiber-optic gyroscope (I-FOG) with a piezoelectric modulator. The common advantages of I-FOGs with closed-loop compensation are linearized output characteristics and insensitivity to the light source power, including its time and thermal-induced fluctuations. Whereas closed-loop operation is normally achieved via ramp modulation requiring an electro-optic modulator, all-fiber architectures with a piezoelectric modulator are mostly limited to open loop. Nevertheless, such setups can more conveniently utilize a less expensive single-mode fiber with depolarized light and do not require any custom-made components. The proposed method allows us to combine the advantages of both approaches. Closed-loop compensation is ensured by adding further sinusoidal modulation to the common biasing modulation, such that the Sagnac phase shift is compensated solely at the sampling instants. We describe and experimentally demonstrate the proposed approach, utilizing a test setup to compare our closed-loop solution with open-loop operation. The results denote that the method provides a cost-efficient manner of performance improvement compared to the open-loop I-FOGs based on a piezoelectric modulator.


Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Author(s):  
J. M. Oblak ◽  
B. H. Kear

The “weak-beam” and systematic many-beam techniques are the currently available methods for resolution of closely spaced dislocations or other inhomogeneities imaged through strain contrast. The former is a dark field technique and image intensities are usually very weak. The latter is a bright field technique, but generally use of a high voltage instrument is required. In what follows a bright field method for obtaining enhanced resolution of partial dislocations at 100 KV accelerating potential will be described.A brief discussion of an application will first be given. A study of intermediate temperature creep processes in commercial nickel-base alloys strengthened by the Ll2 Ni3 Al γ precipitate has suggested that partial dislocations such as those labelled 1 and 2 in Fig. 1(a) are in reality composed of two closely spaced a/6 <112> Shockley partials. Stacking fault contrast, when present, tends to obscure resolution of the partials; thus, conditions for resolution must be chosen such that the phase shift at the fault is 0 or a multiple of 2π.


Author(s):  
N. Osakabe ◽  
J. Endo ◽  
T. Matsuda ◽  
A. Tonomura

Progress in microscopy such as STM and TEM-TED has revealed surface structures in atomic dimension. REM has been used for the observation of surface dynamical process and surface morphology. Recently developed reflection electron holography, which employes REM optics to measure the phase shift of reflected electron, has been proved to be effective for the observation of surface morphology in high vertical resolution ≃ 0.01 Å.The key to the high sensitivity of the method is best shown by comparing the phase shift generation by surface topography with that in transmission mode. Difference in refractive index between vacuum and material Vo/2E≃10-4 owes the phase shift in transmission mode as shownn Fig. 1( a). While geometrical path difference is created in reflection mode( Fig. 1(b) ), which is measured interferometrically using high energy electron beam of wavelength ≃0.01 Å. Together with the phase amplification technique , the vertivcal resolution is expected to be ≤0.01 Å in an ideal case.


1993 ◽  
Vol 3 (7) ◽  
pp. 1649-1659
Author(s):  
Mohammad A. Tafreshi ◽  
Stefan Csillag ◽  
Zou Wei Yuan ◽  
Christian Bohm ◽  
Elisabeth Lefèvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document