Multiply-charged ion beam induced dry etching of semiconductor materials

2000 ◽  
Vol 74 (1-3) ◽  
pp. 40-44 ◽  
Author(s):  
T Meguro ◽  
M Sakamoto ◽  
H Takai ◽  
Y Aoyagi
Author(s):  
Martin Ehrhardt ◽  
Pierre Lorenz ◽  
Jens Bauer ◽  
Robert Heinke ◽  
Mohammad Afaque Hossain ◽  
...  

AbstractHigh-quality, ultra-precise processing of surfaces is of high importance for high-tech industry and requires a good depth control of processing, a low roughness of the machined surface and as little as possible surface and subsurface damage but cannot be realized by laser ablation processes. Contrary, electron/ion beam, plasma processes and dry etching are utilized in microelectronics, optics and photonics. Here, we have demonstrated a laser-induced plasma (LIP) etching of single crystalline germanium by an optically pumped reactive plasma, resulting in high quality etching. A Ti:Sapphire laser (λ = 775 nm, EPulse/max. = 1 mJ, t = 150 fs, frep. = 1 kHz) has been used, after focusing with a 60 mm lens, for igniting a temporary plasma in a CF4/O2 gas at near atmospheric pressure. Typical etching rate of approximately ~ 100 nm / min and a surface roughness of less than 11 nm rms were found. The etching results were studied in dependence on laser pulse energy, etching time, and plasma – surface distance. The mechanism of the etching process is expected to be of chemical nature by the formation of volatile products from the chemical reaction of laser plasma activated species with the germanium surface. This proposed laser etching process can provide new processing capabilities of materials for ultra—high precision laser machining of semiconducting materials as can applied for infrared optics machining.


2018 ◽  
Vol 33 (1) ◽  
pp. 47-52
Author(s):  
Andrey Efremov ◽  
Sergey Bogomolov ◽  
Vladimir Bekhterev ◽  
Aleksandar Dobrosavljevic ◽  
Nebojsa Neskovic ◽  
...  

Recent upgrading of the Facility for Modification and Analysis of Materials with Ion Beams - FAMA, in the Laboratory of Physics of the Vinca Institute of Nuclear Sciences, included the modernization of its electron cyclotron resonance ion source. Since the old ion source was being extensively used for more than 15 years for production of multiply charged ions from gases and solid substances, its complete reconstruction was needed. The main goal was to reconstruct its plasma and injection chambers and magnetic structure, and thus intensify the production of multiply charged ions. Also, it was decided to refurbish its major subsystems - the vacuum system, the microwave system, the gas inlet system, the solid substance inlet system, and the control system. All these improvements have resulted in a substantial increase of ion beam currents, especially in the case of high charge states, with the operation of the ion source proven to be stable and reproducible.


1994 ◽  
Vol 337 ◽  
Author(s):  
Marsha Abramo ◽  
Loren Hahn

ABSTRACTFocused ion beam (FIB) technology is used to modify circuits for early-product design debug; it also has the capability to create probe points to underlying metallurgy, allowing device characterization while maintaining full functionality. These techniques provide critical feedback to designers for rapid verification of proposed design changes.Current FIB technology has its limitations because of redeposition of sputtered material; this phenomena may induce vertical electrical shorts and limit the achievable aspect ratio of a milled via to 6:1. Therefore, innovative enhancements are required to provide modification capability on planar chip technology which may utilize up to five levels of metallurgy. The ability to achieve high-aspect-ratio milling is required to access underlying circuitry. Vias with aspect ratios of 10:1 are necessary in some cases.This paper reviews a gas-assisted etching (GAE) process that enhances FIB milling by volatilizing the sputtered material, examines the results obtained from utilizing the GAE process for high-aspect-ratio milling, and discusses selectivity of semiconductor materials (silicon, aluminum, tungsten and silicon dioxide).


1996 ◽  
Vol 25 (5) ◽  
pp. 825-829 ◽  
Author(s):  
A. T. Ping ◽  
A. C. Schmitz ◽  
M. Asif Khan ◽  
I. Adesida

1997 ◽  
Vol 468 ◽  
Author(s):  
Jae-Won Lee ◽  
Hyong-Soo Park ◽  
Yong-Jo Park ◽  
Myong-Cheol Yoo ◽  
Tae-Il Kim ◽  
...  

ABSTRACTDry etching characteristics of GaN using reactive ion beam etching (RIBE) were studied. Etching profile, etching rate and etching selectivity to a photoresist (PR) mask were investigated as a function of various etching parameters. Characteristics of chemically assisted reactive ion beam etching (CARIBE) and RIBE were compared at varied mixtures of CH4 and Cl2. A highly anisotropie etching profile with a smooth surface was obtained for tilted RIBE with Ch at room temperature. Etching selectivity to a PR was dramatically improved in RIBE and CARIBE when a volume fraction of CH4 to the mixture of CH4 and Ch was larger than 0.83.


2009 ◽  
Vol 518 (5) ◽  
pp. 1543-1548 ◽  
Author(s):  
S. Portal ◽  
M. Rubio-Roy ◽  
C. Corbella ◽  
M.A. Vallvé ◽  
J. Ignes-Mullol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document