scholarly journals The c-kit receptor is involved in the adhesion of mouse primordial germ cells to somatic cells in culture

1997 ◽  
Vol 68 (1-2) ◽  
pp. 37-44 ◽  
Author(s):  
Maurizio Pesce ◽  
Anna Di Carlo ◽  
Massimo De Felici
Nature ◽  
1992 ◽  
Vol 359 (6395) ◽  
pp. 550-551 ◽  
Author(s):  
James L. Resnick ◽  
Lynn S. Bixler ◽  
Linzhao Cheng ◽  
Peter J. Donovan

2017 ◽  
Author(s):  
Chih-Yung S. Lee ◽  
Tu Lu ◽  
Geraldine Seydoux

AbstractThe Nanos RNA-binding protein has been implicated in the specification of primordial germ cells (PGCs) in metazoans, but the underlying mechanisms remain poorly understood. We have profiled the transcriptome of PGCs lacking the nanos homologues nos-1 and nos-2 iC. elegans. nos-1nos-2 PGCs fail to silence hundreds of genes normally expressed in oocytes and somatic cells, a phenotype reminiscent of PGCs lacking the repressive PRC2 complex. The nos-1nos-2 phenotype depends on LIN-15B, a broadly expressed synMuvB class transcription factor known to antagonize PRC2 activity in somatic cells. LIN-15B is maternally-inherited by all embryonic cells and is down-regulated specifically in PGCs in a nos-1nos-2-dependent manner. Consistent with LIN-15B being a critical target of Nanos regulation, inactivation of maternal LIN-15B restores fertility to nos-1nos-2 mutants. These studies demonstrate a central role for Nanos in reprogramming the transcriptome of PGCs away from an oocyte/somatic fate by down-regulating an antagonist of PRC2 activity.


2018 ◽  
Author(s):  
Miguel Angel Brieno-Enriquez ◽  
Stefannie L. Moak ◽  
Anyul Abud-Flores ◽  
Paula Elaine Cohen

Telomeres are dynamic nucleoprotein structures capping the physical ends of linear eukaryotic chromosomes. They consist of telomeric DNA repeats (TTAGGG), the shelterin protein complex, and Telomeric Repeat-Containing RNA (TERRA). Proposed TERRA functions are wide-ranging and include telomere maintenance, telomerase inhibition, genomic stability, and alternative lengthening of telomere. However, the role of TERRA in primordial germ cells (PGCs), the embryonic precursors of germ cells, is unknown. Using RNA-fluorescence in situ hybridization (RNA-FISH) we identify TERRA in PGCs soon after these cells have migrated to, and become established in, the developing gonad. RNA-FISH showed the presence of TERRA transcripts in female PGCs at 11.5, 12.5 and 13.5 days post-coitum. In male PGCs, however, TERRA transcripts are observable from 12.5 dpc. Using qPCR we evaluated chromosome-specific TERRA expression, and demonstrated that TERRA levels vary with sex and gestational age, and that transcription of TERRA from specific chromosomes is sexually dimorphic. TERRA interacting proteins were evaluated using Identification of Direct RNA Interacting Proteins (iDRiP) which identified 48 in female and 26 in male protein interactors specifically within nuclear extracts from PGCs at 13.5 dpc. We validated two different proteins the splicing factor, proline- and glutamine-rich (SFPQ) in PGCs and Non-POU domain-containing octamer-binding protein (NONO) in somatic cells. Our results show that, TERRA interacting proteins are determined by sex in both PGCs and somatic cells. Taken together, our data indicate that TERRA expression and interactome during PGC development are regulated in a dynamic fashion that is dependent on gestational age and sex.


Author(s):  
Rafał P. Piprek ◽  
Malgorzata Kloc ◽  
Paulina Mizia ◽  
Jacek Z. KUBIAK

Cadherins are a group of membrane proteins responsible for cell adhesion. They are crucial for cell sorting and recognition during the morphogenesis, but also play many other roles such as assuring tissue integrity and resistance to stretching, mechanotransduction, cell signaling, regulation of cell proliferation, apoptosis, survival, carcinogenesis, etc. Within the cadherin superfamily, the E- and N-cadherin have been especially well studied. They are involved in many aspects of sexual development and reproduction, such as germline development and gametogenesis, gonad development and functioning, and fertilization. E-cadherin is expressed in the primordial germ cells, (PGCs) and also participates in PGC migration to the developing gonads where they become enclosed by the N-cadherin-expressing somatic cells. The differential expression of cadherins is also responsible for the establishment of the testis or ovary structure. In the adult testes, the N-cadherin is responsible for the integrity of the seminiferous epithelium, regulation of sperm production, and the establishment of the blood-testis barrier. Sex hormones regulate the expression and turnover of N-cadherin influencing the course of spermatogenesis. In the adult ovaries, E- and N-cadherin assure the integrity of ovarian follicles and the formation of corpora lutea. Cadherins are expressed in the mature gametes, and facilitate the capacitation of sperm in the female reproductive tract, and gamete contact during fertilization. The germ cells and accompanying somatic cells express a series of different cadherins, however, their role in gonads and reproduction is still unknown. In this review, we show what is known and unknown about the role of cadherins in the germline and gonad development, and suggest the topics for future research.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 125-137 ◽  
Author(s):  
Peter Besmer ◽  
Katia Manova ◽  
Regina Duttlinger ◽  
Eric J. Huang ◽  
Alan Packer ◽  
...  

The c-kit receptor tyrosine kinase belongs to the PDGF/CSF-1/c-kit receptor subfamily. The kit-ligand, KL, also called steel factor, is synthesized from two alter natively spliced mRNAs as transmembrane proteins that can either be proteolytically cleaved to produce soluble forms of KL or can function as cell-associated molecules. The c-kit receptor kinase and KL are encoded at the white spotting (W) and steel (Sl) loci of the mouse, respectively. Mutations at both the W and the Sl locus cause deficiencies in gametogenesis, melanogenesis and hematopoiesis. The c-kit receptor is expressed in the cellular targets of W and Sl mutations, while KL is expressed in their microenvironment. In melanogenesis, c-kit is expressed in melanoblasts from the time they leave the neural crest and expression continues during embryonic development and in the melanocytes of postnatal animals. In gametogenesis c-kit is expressed in primordial germ cells, in spermatogonia, and in primordial and growing oocytes, implying a role at three distinct stages of gametogenesis. Many mutant alleles are known at W and Sl loci and their phenotypes vary in the degree of severity in the different cellular targets of the mutations. While many W and Sl alleles severely affect primordial germ cells (PGC), several mild Sl alleles have weak effects on PGCs and exhibit differential male or female sterility. Steel Panda (Slpan) is a KL expression mutation in which KL RNA transcript levels are reduced in most tissues analyzed. In female Slpan/Slpan mice, ovarian follicle development is arrested at the one layered cuboidal stage as a result of reduced KL expression in follicle cells, indicating a role for c-kit in oocyte growth. W sh is a c-kit expression mutation, which affects mast cells and melanogenesis. While the mast cell defect results from lack of c-kit expression, the pigmentation deficiency appears to stem from ectopic c-kit receptor expression in the somitic dermatome at the time of migration of melanoblasts from the neural crest to the periphery. It is proposed that the ectopic c-kit expression in Wsh mice affects early melanogenesis in a dominant fashion. The “sash” or white belt of Wsh/+ animals and some other mutant mice is explained by the varying density of melanoblasts along the body axis of wild-type embryos.


Development ◽  
2002 ◽  
Vol 129 (5) ◽  
pp. 1155-1164 ◽  
Author(s):  
Ian R. Adams ◽  
Anne McLaren

During embryogenesis, primordial germ cells (PGCs) have the potential to enter either spermatogenesis or oogenesis. In a female genital ridge, or in a non-gonadal environment, PGCs develop as meiotic oocytes. However, male gonadal somatic cells inhibit PGCs from entering meiosis and direct them to a spermatogenic fate. We have examined the ability of PGCs from male and female embryos to respond to the masculinising environment of the male genital ridge, defining a temporal window during which PGCs retain a bipotential fate. To help understand how PGCs respond to the male gonadal environment, we have identified molecular differences between male PGCs that are committed to spermatogenesis and bipotential female PGCs. Our results suggest that one way in which PGCs respond to this masculinising environment is to synthesise prostaglandin D2. We show that this signalling molecule can partially masculinise female embryonic gonads in culture, probably by inducing female supporting cells to differentiate into Sertoli cells. In the developing testis, prostaglandin D2 may act as a paracrine factor to induce Sertoli cell differentiation. Thus part of the response of PGCs to the male gonadal environment is to generate a masculinising feedback loop to ensure male differentiation of the surrounding gonadal somatic cells.


2021 ◽  
Author(s):  
Ruifeng Zhao ◽  
Qisheng Zuo ◽  
Xia Yuan ◽  
Kai Jin ◽  
Yani Zhang ◽  
...  

Abstract The chicken primordial germ cell (PGCs) has the unique characteristic of settling in gonad through blood migration, which was the only way to realize the recovery of bird species. However, the PGCs obtained from a single embryo was far from enough to meet the practical application, while somatic cells can be obtained in large quantities. Therefore, the problem of insufficient PGCs can be solved by the induction of somatic cells into PGCs. Here, we successfully transdifferentiate somatic cells into PGCs, which can be transplanted to the recipient to produce offspring. In detail, The CEF of Black-Feathered Langshan Chicken was reprogrammed into iPS by reprogramming factors Oct4, Sox2, Nanog and Lin28, then was induced into PGCs by BMP4/BMP8b/EGF system. The induced PGCs has similar biological characteristics to the primary PGCs, which was transplanted into White Plymouth Rock Chicken, which self-crossed to produce clone-like offspring. It was the the first time to demonstrate the feasibility of avian cloning from somatic cells.


1994 ◽  
Vol 161 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Eihachiro Kawase ◽  
Hiroshi Yamamoto ◽  
Koichiro Hashimoto ◽  
Norio Nakatsuji

Nature ◽  
1991 ◽  
Vol 353 (6346) ◽  
pp. 750-752 ◽  
Author(s):  
Yasuhisa Matsui ◽  
Deniz Toksoz ◽  
Satomi Nishikawa ◽  
Shin-Ichi Nishikawa ◽  
David Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document