Free fatty acids and volatile compounds in low-fat Kefalograviera-type cheese made with commercial adjunct cultures

2003 ◽  
Vol 13 (1) ◽  
pp. 47-54 ◽  
Author(s):  
E Kondyli ◽  
T Massouras ◽  
M.C Katsiari ◽  
L.P Voutsinas
2002 ◽  
Vol 79 (2) ◽  
pp. 199-205 ◽  
Author(s):  
E Kondyli ◽  
M.C Katsiari ◽  
T Masouras ◽  
L.P Voutsinas

2004 ◽  
Vol 72 (2) ◽  
pp. 168-178 ◽  
Author(s):  
María Ortigosa ◽  
Cristina Arizcun ◽  
Paloma Torre ◽  
Jesús María Izco

The effect of an added adjunct culture consisting of facultatively heterofermentative lactobacilli (FHL) on the volatile compounds and sensory characteristics of a Spanish ewes'-milk cheese was examined. Three cheese batches were prepared using a commercial starter, one from raw milk, another from pasteurized milk, and a third from pasteurized milk with an added culture of wild Lactobacillus. paracasei+Lb. plantarum. Analysis of the volatile compounds was carried out by the purge and trap method and gas chromatography with a mass spectrometer and disclosed a total of 86 compounds belonging to the chemical families hydrocarbons, fatty acids, esters, ketones, aldehydes, and alcohols. After ageing for 120 and 240 days, the cheese samples underwent sensory analysis by a panel of expert assessors. The attributes evaluated were characteristic odour and odour intensity and characteristic aroma and aroma intensity. Pasteurization of the milk had an effect on the formation of certain volatile compounds, adversely affecting the characteristic flavour of the cheese. Use of the adjunct culture in addition to the commercial starter improved the flavour of the cheese made from the pasteurized milk, which earned sensory scores similar to those awarded to the cheese made from the raw milk. Use of adjunct cultures consisting of indigenous FHL strains could help to conserve the traditional characteristics of Roncal cheese made from pasteurized milk, although some technical adjustments to the Regulations would be needed.


2017 ◽  
Vol 36 (1) ◽  
pp. 99-105 ◽  
Author(s):  
Tamako Miyazaki ◽  
Takashi Nishimura ◽  
Tetsuro Yamashita ◽  
Masao Miyazaki

Abstract Scent emitted from anal sac secretions provides important signals for most Carnivora. Their secretions emit a variety of volatile compounds, some of which function as chemical signals with information about the scent owners. The domestic cat has a pair of anal sac glands to secrete a pungent liquid. Their anal sac secretions may give information about sex, reproductive state, and recognition of individuals. However, little is known about the volatile compounds emitted from anal sac secretions and their biological functions in cats. In this study, we examined the volatile chemical profiles of anal sac secretions in cats and their olfactory ability to discriminate intraspecific anal sac secretions. Analysis with gas chromatography–mass spectrometry showed that the major volatile compounds were short-chain free fatty acids, whose contents varied among individuals, as well as other carnivores. There was no sex difference in the volatile profiles. In temporal analyses of individual anal sac secretions performed 2 months apart, the profiles were highly conserved within individuals. Habituation–dishabituation tests showed that cats can distinguish individual differences in the odor of anal sac secretions. These results suggest that cats utilize short-chain free fatty acids emitted from anal sac secretions to obtain scent information for individual recognition rather than species or sex recognition.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3140
Author(s):  
Adeline Karolkowski ◽  
Elisabeth Guichard ◽  
Loïc Briand ◽  
Christian Salles

The worldwide demand for pulse-based products is increasing in the face of climate change, but their acceptability is limited due to the presence of off-flavours. Off-notes contribute to negative perceptions of pulses (beany notes). Volatile compounds belong to a large variety of chemical classes. They are mainly produced from the oxidation of unsaturated free fatty acids and the degradation of amino acids during seed development, storage, and transformation (dehulling, milling, and starch or protein production). This review aims to provide an overview highlighting the identification of these molecules in different pulses, their potential origins, and their impact on perceptions. However, data on odour-active compounds in pulses are sparse, as they are limited to those of two studies on peas and lupins. A better knowledge of the volatile compounds involved in the off-notes and their origins should allow for drawing efficient strategies to limit their impact on overall perception for more acceptable healthy food design.


Molecules ◽  
2020 ◽  
Vol 25 (10) ◽  
pp. 2311 ◽  
Author(s):  
Francesca Bennato ◽  
Denise Innosa ◽  
Andrea Ianni ◽  
Camillo Martino ◽  
Lisa Grotta ◽  
...  

The aim of this study was to evaluate the development of volatile compounds in yogurt samples obtained from goats fed a dietary supplementation with olive leaves (OL). For this purpose, thirty Saanen goats were divided into two homogeneous groups of 15 goats each: a control group that received a standard diet (CG) and an experimental group whose diet was supplemented with olive leaves (OLG). The trial lasted 28 days, at the end of which the milk of each group was collected and used for yogurt production. Immediately after production, and after 7 days of storage at 4 °C in the absence of light, the yogurt samples were characterized in terms of fatty acid profile, oxidative stability and volatile compounds by the solid-phase microextraction (SPME)–GC/MS technique. Dietary OL supplementation positively affected the fatty acid composition, inducing a significant increase in the relative proportion of unsaturated fatty acids, mainly oleic acid (C18:1 cis9) and linolenic acid (C18:3). With regard to the volatile profile, both in fresh and yogurt samples stored for 7 days, the OL supplementation induced an increase in free fatty acids, probably due to an increase in lipolysis carried out by microbial and endogenous milk enzymes. Specifically, the largest variations were found for C6, C7, C8 and C10 free fatty acids. In the same samples, a significant decrease in aldehydes, mainly heptanal and nonanal, was also detected, supporting—at least in part—an improvement in the oxidative stability. Moreover, alcohols, esters and ketones appeared lower in OLG samples, while no significant variations were observed for lactones. These findings suggest the positive role of dietary OL supplementation in the production of goats’ milk yogurt, with characteristics potentially indicative of an improvement in nutritional properties and flavor.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 286
Author(s):  
Pasquale Filannino ◽  
Raffaella Di Cagno ◽  
Giuseppe Gambacorta ◽  
Ali Zein Alabiden Tlais ◽  
Vincenzo Cantatore ◽  
...  

Bee-collected pollen (BCP) is currently receiving increasing attention as a dietary supplement for humans. In order to increase the accessibility of nutrients for intestinal absorption, several biotechnological solutions have been proposed for BCP processing, with fermentation as one of the most attractive. The present study used an integrated metabolomic approach to investigate how the use of starter cultures may affect the volatilome and the profile of bioaccessible phenolics of fermented BCP. BCP fermented with selected microbial starters (Started-BCP) was compared to spontaneously fermented BCP (Unstarted-BCP) and to unprocessed raw BCP (Raw-BCP). Fermentation significantly increased the amount of volatile compounds (VOC) in both Unstarted- and Started-BCP, as well as modifying the relative proportions among the chemical groups. Volatile free fatty acids were the predominant VOC in Unstarted-BCP. Started-BCP was differentiated by the highest levels of esters and alcohols, although volatile free fatty acids were always prevailing. The profile of the VOC was dependent on the type of fermentation, which was attributable to the selected Apilactobacillus kunkeei and Hanseniaspora uvarum strains used as starters, or to the variety of yeasts and bacteria naturally associated to the BCP. Started-BCP and, to a lesser extent, Unstarted-BCP resulted in increased bioaccessible phenolics, which included microbial derivatives of phenolic acids metabolism.


Sign in / Sign up

Export Citation Format

Share Document