26 NPD926, a small molecule inducer of reactive oxygen species, kills cancer cells via glutathione depletion

2014 ◽  
Vol 50 ◽  
pp. 14
Author(s):  
T. Kawamura ◽  
Y. Kondoh ◽  
M. Muroi ◽  
M. Kawatani ◽  
H. Osada
2014 ◽  
Vol 463 (1) ◽  
pp. 53-63 ◽  
Author(s):  
Tatsuro Kawamura ◽  
Yasumitsu Kondoh ◽  
Makoto Muroi ◽  
Makoto Kawatani ◽  
Hiroyuki Osada

A new cytotoxic compound was found in our chemical library. We revealed that the compound induced reactive oxygen species through glutathione depletion. Moreover, the compound was effective against several cancer cell lines including those harbouring KRAS.


2018 ◽  
Vol 16 (9) ◽  
pp. 1465-1479 ◽  
Author(s):  
Sara R. Fedorka ◽  
Kevin So ◽  
Ayad A. Al-Hamashi ◽  
Ibtissam Gad ◽  
Ronit Shah ◽  
...  

In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species in an iron-dependent manner.


2019 ◽  
Vol 18 (9) ◽  
pp. 1313-1322 ◽  
Author(s):  
Manjula Devi Ramamoorthy ◽  
Ashok Kumar ◽  
Mahesh Ayyavu ◽  
Kannan Narayanan Dhiraviam

Background: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. Methods: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. Results: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. Conclusion: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


2020 ◽  
Vol 22 (1) ◽  
pp. 154
Author(s):  
Fasih Bintang Ilhami ◽  
Kai-Chen Peng ◽  
Yi-Shiuan Chang ◽  
Yihalem Abebe Alemayehu ◽  
Hsieh-Chih Tsai ◽  
...  

Development of stimuli-responsive supramolecular micelles that enable high levels of well-controlled drug release in cancer cells remains a grand challenge. Here, we encapsulated the antitumor drug doxorubicin (DOX) and pro-photosensitizer 5-aminolevulinic acid (5-ALA) within adenine-functionalized supramolecular micelles (A-PPG), in order to achieve effective drug delivery combined with photo-chemotherapy. The resulting DOX/5-ALA-loaded micelles exhibited excellent light and pH-responsive behavior in aqueous solution and high drug-entrapment stability in serum-rich media. A short duration (1–2 min) of laser irradiation with visible light induced the dissociation of the DOX/5-ALA complexes within the micelles, which disrupted micellular stability and resulted in rapid, immediate release of the physically entrapped drug from the micelles. In addition, in vitro assays of cellular reactive oxygen species generation and cellular internalization confirmed the drug-loaded micelles exhibited significantly enhanced cellular uptake after visible light irradiation, and that the light-triggered disassembly of micellar structures rapidly increased the production of reactive oxygen species within the cells. Importantly, flow cytometric analysis demonstrated that laser irradiation of cancer cells incubated with DOX/5-ALA-loaded A-PPG micelles effectively induced apoptotic cell death via endocytosis. Thus, this newly developed supramolecular system may offer a potential route towards improving the efficacy of synergistic chemotherapeutic approaches for cancer.


2008 ◽  
Vol 84 (11) ◽  
pp. 945-955 ◽  
Author(s):  
Eui Kwan Koh ◽  
Byung-Kyu Ryu ◽  
Dong-Young Jeong ◽  
Iel-Soo Bang ◽  
Myung Hee Nam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document