A monoclonal antibody to oestradiol potentiates the stimulation of the specific activity of the brain type creatine kinase by oestrogen in vivo and in vitro

1998 ◽  
Vol 64 (5-6) ◽  
pp. 297-304 ◽  
Author(s):  
D. Sömjen ◽  
Y. Amir-Zaltsman ◽  
G. Mor ◽  
B. Gayer ◽  
S. Lichter ◽  
...  
1995 ◽  
Vol 309 (1) ◽  
pp. 85-90 ◽  
Author(s):  
D Sömjen ◽  
V Vargas ◽  
A Waisman ◽  
E Wingender ◽  
W Tegge ◽  
...  

We have reported that mid-region fragments of human parathyroid hormone (hPTH), exemplified by hPTH-(28-48), stimulated [3H]thymidine incorporation into DNA and increased the specific activity of the brain-type isoenzyme of creatine kinase (CK) in both skeletal-derived cell cultures (ROS 17/2.8 cells) and immature rat epiphyseal cartilage and diaphyseal bone, without stimulating cyclic AMP synthesis which is a prerequisite for bone resorption. In the present study, substitution of amino acids in hPTH-(28-48), which resulted in increased resistance to proteolysis, produced variants that stimulated skeletal systems at two orders of magnitude lower concentration than the wild-type fragment. We modified hPTH-(28-48) at Leu-37 by replacement with Met, Thr or Val. Under conditions in which 20% of the native hPTH-(28-48) resisted proteolysis by cathepsin D for 6 h, approx. 40% of the L37V mutant and 70% of the L37T mutant remained intact. Substitution of Met for Phe-34 in addition to Thr for Leu-37, or the substitution of Met for Phe-34 alone, produced 100%-resistant fragments. These variants at residue 34 caused maximal stimulation of CK in ROS 17/2.8 cells at 0.24 nM compared with 24 nM for hPTH-(28-48). The double mutant stimulated CK activity significantly in immature rats, at a minimum dose of 12.5 ng/rat, and caused maximal stimulation at 125 ng/rat, a 10-fold lower dose than for hPTH-(28-48). The effect of the double mutant lasted up to 24 h which differs from the stimulation by hPTH-(28-48) in which CK specific activity returns to the control level at 24 h. This same dose also significantly stimulated CK activity in gonadectomized rats. These results show the advantage of using protease-resistant mid-region variants of hPTH-(28-48) to stimulate bone cells, in terms of lower doses and longer duration of effectiveness, both in vitro and in vivo.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff–Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity and radiochemical purity, were evaluated by high-performance liquid chromatography (HPLC). Radiochemical concentration was determined by radioactivity calibrator. Metabolic kinetics and the level of 18F-deoxy-thiamine in brains of mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, and biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter, respectively. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 min after injection as represented by the area under the curve (AUC) and blood thiamine levels was investigated. Results The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61 ± 0.53 in the liver within 1 min, 18.67 ± 7.04 in the kidney within half a minute. The SUV dropped to 0.72 ± 0.05 and 0.77 ± 0.35 after 60 min of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 min after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 min was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = − 0.985, p = 0.015). Conclusion The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


1977 ◽  
Vol 55 (4) ◽  
pp. 934-942 ◽  
Author(s):  
Thomas W. Dolby ◽  
Lewis J. Kleinsmith

The experiments presented in this paper examine the mechanisms underlying the ability of cannabinoids to alter the in vivo levels of cyclic adenosine 3′,5′-monophosphate (cyclic AMP) in mouse brain. It was found that changes in cyclic AMP levels are a composite result of direct actions of cannabinoids on adenylate cyclase (EC 4.6.1.1) activity and indirect actions involving the potentiation or inhibition of biogenic amine induced activity of adenylate cyclase. Furthermore, the long-term intraperitoneal administration of 1-(−)-Δ-tetrahydrocannabinol to mice produced a form of phosphodiesterase (EC 3.1.4.17) in the brain whose activity is not stimulated by Ca2+, although its basal specific activity is similar to that of control animals. In vitro, the presence of the cannabinoids caused no significant changes in activity of brain PDE at the concentrations tested. Some correlations are presented which imply that many of the observed behavioral and physiological actions of the cannabinoids in mammalian organisms may be mediated via cyclic AMP mechanisms.


The cerebral influx rates of fifteen amino acids were measured directly in living rats by means of a new technique which makes it possible to maintain a constant specific activity of a radioactively labelled amino acid in the bloodstream. A wide variation in the influx rates of the amino acids was found. These rates differed from those found by other workers using in vitro preparations, but are consistent with the theory that amino acids enter the brain mainly by carrier mediated transport processes with a high degree of specificity. There are a number of important differences between the behaviour of the transport processes in vivo and in vitro . The influx rates of the various amino acids were directly proportional to their concentra­tions in blood plasma (over the range of concentrations studied). All the nutritionally essential amino acids had relatively high influx rates as did other amino acids which the brain does not seem to be able to synthesize. On the other hand, amino acids that the brain can readily synthesize and two amino acids which are not normally found in mammalian tissues had low influx rates.


2020 ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background: Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff-Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods: A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity, radiochemical purity, radiochemical concentration, were evaluated by high performance liquid chromatography (HPLC). Metabolic kinetics and brain level of 18F-deoxy-thiamine in mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 minutes after injection as represented by the area under the curve (AUC) and blood thiamine levels were investigated. Results: The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61±0.53 in the liver within 1 minute, 18.67±7.04 in the kidney within half a minute. The SUV dropped to 0.72±0.05 and 0.77±0.35 after 60 minutes of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 minutes after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency by thiamine-deprived diet (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 minutes was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = -0.985, p = 0.015).Conclusion: The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


2020 ◽  
Author(s):  
Kristen L. Kozielski ◽  
Ali Jahanshahi ◽  
Hunter B. Gilbert ◽  
Yan Yu ◽  
Önder Erin ◽  
...  

AbstractDevices that electrically modulate the central nervous system have enabled important breakthroughs in the management of neurological and psychiatric disorders. Such devices typically have centimeter-scale dimensions, requiring surgical implantation and wired-in powering. Using smaller, remotely powered materials could lead to less invasive neuromodulation. Herein, we present injectable magnetoelectric nanoelectrodes that wirelessly transmit electrical signals to the brain in response to an external magnetic field. Importantly, this mechanism of modulation requires no genetic modification of the brain, and allows animals to freely move during stimulation. Using these nanoelectrodes, we demonstrate neuronal modulation in vitro and in deep brain targets in vivo. We also show that local thalamic modulation promotes modulation in other regions connected via basal ganglia circuitry, leading to behavioral changes in mice. Magnetoelectric materials present a versatile platform technology for less invasive, deep brain neuromodulation.


1982 ◽  
Vol 95 (2) ◽  
pp. 519-526 ◽  
Author(s):  
J Nath ◽  
M Flavin ◽  
J I Gallin

We have recently reported a specific dose-dependent stimulation of posttranslational incorporation of tyrosine into tubulin alpha-chains of rabbit peritoneal leukocytes as induced by the synthetic peptide chemoattractant formyl-methionyl-leucyl-phenylalanine (FMLP). The present study reports a similar, specific stimulation of tubulin tyrosinolation in human polymorphonuclear leukocytes (PMN). When compared to normal PMN, both the resting and FMLP-stimulated levels of posttranslational tyrosine incorporation were two- to threefold higher in PMN of three patients with the Chediak-Higashi syndrome (CHS). The concentration of cellular tubulin and the specific activity of tubulin tyrosine ligase were similar in PMN of CHS patients and normal donors and resembled that of other non-neuronal cells. The high levels of tyrosine incorporation in PMN of CHS patients were normalized by the administration of ascorbate, both in vitro and in in vivo experiments. In vitro addition of ascorbate also inhibited the FMLP-induced stimulation of tyrosine incorporation in both normal and CHS cells. Normalization of higher levels of tyrosine incorporation in PMN of CHS patients and the inhibition of FMLP-induced stimulation of tubulin tyrosinolation in normal and CHS cells as observed with ascorbate could also be affected by other reducing agents such as reduced glutathione, cysteine, or dithiothreitol. These results suggest a possible relationship between cellular redox and tubulin tyrosinolation in PMN.


1966 ◽  
Vol 166 (1004) ◽  
pp. 273-284 ◽  

With the object of throwing light upon the brain damage found in patients with Wilson’s disease (hepato-lenticular degeneration) due to the accumulation of copper, the effect of Cu 2+ has been investigated in pigeons. Subarachnoid injections of Cu 2+ (10 to 25 µ g) led to rapid onset of convulsions and death. These concentrations of Cu 2+ inhibited pigeon and rat b rain mitochondria; more organized tissue breis or slices showed no significant inhibition of oxygen up take at Cu +2 concentration inducing convulsions in vivo . Studies with radioactive copper ( 64 Cu) showed that the injected copper was widely distributed in the brain, though maximal near the site of injection. Centrifugation showed a high specific activity in the ATP -ase-rich microsomal fraction. Thorium in concentrations similar to Cu 2+ was not toxic. From this we suggest that the Cu 2+ does not alter the charge on some membrane surface. Since the effect of the copper is immediate, and since it does not affect respiration of slices in these low concentrations, we conclude that it is exerting its convulsive effect directly upon the cell surfaces.


1996 ◽  
Vol 149 (2) ◽  
pp. 305-312 ◽  
Author(s):  
D Sömjen ◽  
Y Amir-Zaltsman ◽  
G Mor ◽  
B Gayer ◽  
S Lichter ◽  
...  

Abstract Previous studies indicated that the anti-idiotypic antibody (clone 1D5) significantly increased the specific activity of creatine kinase (CK) activity in the rat uterus, and in vitro in skeletal cells capable of responding to oestradiol (E2), suggesting that the antibody has oestrogenic-like activity. Moreover, the F(ab′)2 dimer of clone 1D5 acted like an antagonist and completely inhibited the increase in CK specific activity by either E2 or clone 1D5 in these skeletal cells. In the present study, we examined the in vivo effects of clone 1D5 and its proteolytic fragment, the F(ab′)2 dimer, E2 and dihydrotestosterone (DHT) on CK specific activity in the epiphyseal cartilage, diaphyseal bone, uterus, prostate, thymus and pituitary of immature or gonadectomized female and male rat animal models. In the intact immature animals, clone 1D5 caused an increase in CK in all organs of the female except in the pituitary. In the diaphyseal bone and prostate of male rats there was no stimulation by 1D5. The CK response in the uterus, epiphysis, and diaphysis of immature female rats was dose-dependent and was blocked by either the anti-oestrogen tamoxifen or the F(ab′)2 dimer of clone 1D5. E2, DHT, as well as clone 1D5, stimulated CK specific activity in both the diaphysis and epiphysis of ovariectomized female and castrated male rats, whereas sex specificity in the CK response was observed also in the uterus and the prostate of gonadectomized animals. Collectively, these results suggest that, as in cell culture, an intact antibody is necessary for the observed stimulation of CK specific activity and the F(ab′)2 dimer can act as an antagonist. Furthermore, the observed biological effects of clone 1D5 which are absolutely parallel to E2, imply that the anti-idiotypic antibody is able to penetrate the cell and reach the nuclear oestrogen receptor and transduces a signal to the nucleus, by as yet uncharacterized mechanisms. Journal of Endocrinology (1996) 149, 305–312


2020 ◽  
Author(s):  
Changpeng Wang ◽  
Siwei Zhang ◽  
Yuefei Zou ◽  
Hongzhao Ma ◽  
Donglang Jiang ◽  
...  

Abstract Background: Some neuropsychological diseases are associated with abnormal thiamine metabolism, including Korsakoff-Wernicke syndrome and Alzheimer’s disease. However, in vivo detection of the status of brain thiamine metabolism is still unavailable and needs to be developed. Methods: A novel PET tracer of 18F-deoxy-thiamine was synthesized using an automated module via a two-step route. The main quality control parameters, such as specific activity and radiochemical purity, were evaluated by high performance liquid chromatography (HPLC). Radiochemical concentration was determined by radioactivity calibrator. Metabolic kinetics and the level of 18F-deoxy-thiamine in brains of mice and marmosets were studied by micro-positron emission tomography/computed tomography (PET/CT). In vivo stability, renal excretion rate, biodistribution of 18F-deoxy-thiamine in the mice were assayed using HPLC and γ-counter, respectively. Also, the correlation between the retention of cerebral 18F-deoxy-thiamine in 60 minutes after injection as represented by the area under the curve (AUC) and blood thiamine levels were investigated. Results: The 18F-deoxy-thiamine was stable both in vitro and in vivo. The uptake and clearance of 18F-deoxy-thiamine were quick in the mice. It reached the max standard uptake value (SUVmax) of 4.61±0.53 in the liver within 1 minute, 18.67±7.04 in the kidney within half a minute. The SUV dropped to 0.72±0.05 and 0.77±0.35 after 60 minutes of injection in the liver and kidney, respectively. After injection, kidney, liver, and pancreas exhibited high accumulation level of 18F-deoxy-thiamine, while brain, muscle, fat, and gonad showed low accumulation concentration, consistent with previous reports on thiamine distribution in mice. Within 90 minutes after injection, the level of 18F-deoxy-thiamine in the brain of C57BL/6 mice with thiamine deficiency (TD) was 1.9 times higher than that in control mice, and was 3.1 times higher in ICR mice with TD than that in control mice. The AUC of the tracer in the brain of marmosets within 60 minutes was 29.33 ± 5.15 and negatively correlated with blood thiamine diphosphate levels (r = - 0.985, p = 0.015).Conclusion: The 18F-deoxy-thiamine meets the requirements for ideal PET tracer for in vivo detecting the status of cerebral thiamine metabolism.


Sign in / Sign up

Export Citation Format

Share Document