Identification of peptides that specifically bind Aβ1–40 amyloid in vitro and amyloid plaques in Alzheimer's disease brain using phage display

2003 ◽  
Vol 14 (1) ◽  
pp. 146-156 ◽  
Author(s):  
C Kang
2019 ◽  
Vol 16 (8) ◽  
pp. 723-731 ◽  
Author(s):  
Alexander Sturzu ◽  
Sumbla Sheikh ◽  
Hubert Kalbacher ◽  
Thomas Nägele ◽  
Christopher Weidenmaier ◽  
...  

Background: Curcumin has been of interest in the field of Alzheimer’s disease. Early studies on transgenic mice showed promising results in the reduction of amyloid plaques.However, curcumin is very poorly soluble in aqueous solutions and not easily accessible to coupling as it contains only phenolic groups as potential coupling sites. For these reasons only few imaging studies using curcumin bound as an ester were performed and curcumin is mainly used as nutritional supplement. Methods: In the present study we produced an aminoethyl ether derivative of curcumin using a nucleophilic substitution reaction. This is a small modification and should not impact the properties of curcumin while introducing an easily accessible reactive amino group. This novel compound could be used to couple curcumin to other molecules using the standard methods of peptide synthesis. We studied the aminoethyl-curcumin compound and a tripeptide carrying this aminoethyl-curcumin and the fluorescent dye fluorescein (FITC-curcumin) in vitro on cell culture using confocal laser scanning microscopy and flow cytometry. Then these two substances were tested ex vivo on brain sections prepared from transgenic mice depicting Alzheimer-like β-amyloid plaques. Results: In the in vitro CLSM microscopy and flow cytometry experiments we found dot-like unspecific uptake and only slight cytotoxicity correlating with this uptake. As these measurements were optimized for the use of fluorescein as dye we found that the curcumin at 488nm fluorescence excitation was not strong enough to use it as a fluorescence marker in these applications. In the ex vivo sections CLSM experiments both the aminoethyl-curcumin and the FITC-curcumin peptide bound specifically to β- amyloid plaques. Conclusion: In conclusion we successfully produced a novel curcumin derivative which could easily be coupled to other imaging or therapeutic molecules as a sensor for amyloid plaques.


1997 ◽  
Vol 323 (2) ◽  
pp. 539-546 ◽  
Author(s):  
Poul H. JENSEN ◽  
Peter HØJRUP ◽  
Henrik HAGER ◽  
Morten S. NIELSEN ◽  
Linda JACOBSEN ◽  
...  

NAC, a 35-residue peptide derived from the neuronal protein α-synuclein/NAC precursor, is tightly associated with Aβ fibrils in Alzheimer's disease amyloid, and α-synuclein has recently been shown to bind Aβ in vitro. We have studied the interaction between Aβ and synucleins, aiming at determining segments in α-synuclein that can account for the binding, as well as identifying a possible interaction between Aβ and the β-type synuclein. We report that Aβ binds to native and recombinant α-synuclein, and to β-synuclein in an SDS-sensitive interaction (IC50 approx. 20 μM), as determined by chemical cross-linking and solid-phase binding assays. α-Synuclein and β-synuclein were found to stimulate Aβ-aggregation in vitro to the same extent. The synucleins also displayed Aβ-inhibitable binding of NAC and they were capable of forming dimers. Using proteolytic fragmentation of α-synuclein and cross-linking to 125I-Aβ, we identified two consecutive binding domains (residues 1–56 and 57–97) by Edman degradation and mass spectrometric analysis, and a synthetic peptide comprising residues 32–57 possessed Aβ-binding activity. To test further the possible significance in pathology, α-synuclein was biotinylated and shown to bind specifically to amyloid plaques in a brain with Alzheimer's disease. It is proposed that the multiple Aβ-binding sites in α-synuclein are involved in the development of amyloid plaques.


2011 ◽  
Vol 7 ◽  
pp. S311-S311
Author(s):  
Zhizhen Zeng ◽  
Tsing-Bau Chen ◽  
Brett Connolly ◽  
Patricia Miller ◽  
Stacey O'Malley ◽  
...  

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Celeste A. Roney ◽  
Veera Arora ◽  
Padmakar V. Kulkarni ◽  
Peter P. Antich ◽  
Frederick J. Bonte

Detecting aggregated amyloid peptides (Aβplaques) presents targets for developing biomarkers of Alzheimer's disease (AD). Polymeric n-butyl-2-cyanoacrylate (PBCA) nanoparticles (NPs) were encapsulated with radiolabelled amyloid affinityI125-clioquinol (CQ, 5-chloro-7-iodo-8-hydroxyquinoline) as in vivo probes.I125-CQ-PBCA NPs crossed the BBB (2.3±0.9 ID/g) (P<.05) in the WT mouse (N= 210), compared toI125-CQ (1.0±0.4 ID/g).I125-CQ-PBCA NP brain uptake increased in AD transgenic mice (APP/PS1) versus WT (N= 38;2.54×105±5.31×104 DLU/mm2; versus1.98×105±2.22×104 DLU/mm2) and in APP/PS1/Tau. Brain increases were in mice intracranially injected with aggregated Aβ42peptide (N= 17;7.19×105±1.25×105 DLU/mm2), versus WT (6.07×105±7.47×104 DLU/mm2). Storage phosphor imaging and histopathological staining of the plaques,Fe2+andCu2+, validated results.I125-CQ-PBCA NPs have specificity for Aβin vitro and in vivo and are promising as in vivo SPECT (I123), or PET (I124) amyloid imaging agents.


2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


Sign in / Sign up

Export Citation Format

Share Document