Ski jump trajectory with consideration of air resistance

2015 ◽  
Vol 27 (3) ◽  
pp. 465-468 ◽  
Author(s):  
Jian-hua Wu ◽  
Xiao-yan Zhang ◽  
Fei Ma ◽  
Wei-wei Wu
2012 ◽  
Vol 8 (1) ◽  
pp. 1-15
Author(s):  
Gy. Sitkei

Motion of particles with air resistance (e.g. horizontal and inclined throwing) plays an important role in many technological processes in agriculture, wood industry and several other fields. Although, the basic equation of motion of this problem is well known, however, the solutions for practical applications are not sufficient. In this article working diagrams were developed for quick estimation of the throwing distance and the terminal velocity. Approximate solution procedures are presented in closed form with acceptable error. The working diagrams provide with arbitrary initial conditions in dimensionless form of general validity.


Author(s):  
Peter Rez

Everything that rolls along the ground uses energy to overcome both rolling resistance and air resistance. Air resistance is more significant at higher speeds. Repeated accelerations dominate energy use in stop–start city driving. Not surprisingly, heavy, large SUVs use more energy to go a given distance than lighter, more streamlined cars. Due to the mismatch between the torque required and the rotation rate of the drive wheels, internal combustion engines in cars or trucks do not operate at their peak efficiency. Trains are the most efficient form of ground transportation due to both the lower rolling resistance of steel wheels on railroad tracks and the lower air resistance of its long and thin structure. A further advantage is that rail with fixed tracks can take advantage of the efficient generation of electrical energy. This is also obviously the main disadvantage; trains can only go where tracks have been laid.


1984 ◽  
Vol 57 (4) ◽  
pp. 225-228 ◽  
Author(s):  
Colin Wratten
Keyword(s):  

2021 ◽  
Vol 24 (1) ◽  
Author(s):  
T. van Druenen ◽  
B. Blocken

AbstractSome teams aiming for victory in a mountain stage in cycling take control in the uphill sections of the stage. While drafting, the team imposes a high speed at the front of the peloton defending their team leader from opponent’s attacks. Drafting is a well-known strategy on flat or descending sections and has been studied before in this context. However, there are no systematic and extensive studies in the scientific literature on the aerodynamic effect of uphill drafting. Some studies even suggested that for gradients above 7.2% the speeds drop to 17 km/h and the air resistance can be neglected. In this paper, uphill drafting is analyzed and quantified by means of drag reductions and power reductions obtained by computational fluid dynamics simulations validated with wind tunnel measurements. It is shown that even for gradients above 7.2%, drafting can yield substantial benefits. Drafting allows cyclists to save over 7% of power on a slope of 7.5% at a speed of 6 m/s. At a speed of 8 m/s, this reduction can exceed 16%. Sensitivity analyses indicate that significant power savings can be achieved, also with varying bicycle, cyclist, road and environmental characteristics.


1930 ◽  
Vol 34 (238) ◽  
pp. 813-848 ◽  
Author(s):  
H. C. H. Townend

The work which forms the subject matter of this paper relates to a device for reducing the air resistance of an air-cooled radial engine. It can be added to the engine without completely enclosing the cylinders, either singly or collectively, in streamline casings of the conventional type, which usually render the engine inaccessible.


2021 ◽  
Vol 13 (1) ◽  
pp. 111-117
Author(s):  
Mikhail Podrigalo ◽  
◽  
Volodymyr Krasnokutskyi ◽  
Vitaliy Kashkanov ◽  
Olexander Tkachenko ◽  
...  

Aerodynamic characteristics have a major impact on the energy efficiency and traction and speed properties of the vehicle. In this article, based on previous studies of the aerodynamic characteristics of various car models, we propose an improved method for selecting engine and transmission parameters at the design stage. The aim of the study is to improve the dynamic properties of the car by improving the method of selecting the main parameters of the engine-transmission unit by refining the calculation of aerodynamic drag. To achieve it, the following tasks must be solved: to specify the method of selecting the maximum effective engine power; to specify a technique of definition of the maximum constructive speed of the car; to develop a technique for selecting gear ratios. The aerodynamic resistance to the movement of the vehicle is determined by the frontal coefficient of the specified resistance, the density of the air, the area of the frontal resistance and the speed of the vehicle. It is known from classical works on the aerodynamics of a car that in the range of vehicle speeds from 20 m / s to 80 m / s, taking the law of squares when assessing the force of air resistance, it is necessary to change the coefficient of frontal aerodynamic drag depending on the speed of the car. However, when carrying out calculations, this coefficient is taken constant, which leads to obtaining large values of the air resistance force at high speeds and lower at low speeds. There are two possible ways to improve the dynamic properties and energy efficiency of the car during its modernization (increasing the maximum design speed of the car by reducing the gear ratio in higher gear; reducing the maximum efficiency of the engine while maintaining the previous gear ratio in higher gear). As a result of the study, the method of selection (maximum effective engine power; maximum design speed of the car; gear ratios) at the design stage of the parameters of the motor-transmission unit of the car has been improved.


2016 ◽  
Vol 22 ◽  
pp. 7 ◽  
Author(s):  
Leif Inge Tjelta ◽  
Shaher A. I. Shalfawi

Running distances from 3000 m to the marathon (42 195 m) are events dominated by energy contribution of the aerobic energy system. The physiological factors that underlie success in these running events are maximal oxygen uptake (VO2max), running economy (RE), the utilization of the maximum oxygen uptake (%VO2max) and velocity at the anaerobic threshold (vAT). VO2max for distance runners competing on an international level has been between 70 and 87 ml/kg/min in men, and between 60 and 78.7 ml/kg/min in women, respectively. Due to lack of air resistance, laboratory testing of RE and vAT are recommended to be conducted on treadmill with 1% slope. %VO2max are in most studies expressed as the average fractional utilization of VO2max at vAT. Much of the current understanding regarding the response to exercise is based on studies of untrained and moderately trained individuals. To use this knowledge to give training recommendations to elite runners is hardly valid. Researchers should therefore exercise caution when giving training recommendations to coaches and elite distance runners based on limited available research.


Sign in / Sign up

Export Citation Format

Share Document