Influence of cooling rate on solidification behavior of sand-cast Mg–10Gd–3Y–0.4Zr alloy

2014 ◽  
Vol 24 (11) ◽  
pp. 3413-3420 ◽  
Author(s):  
Song PANG ◽  
Guo-hua WU ◽  
Wen-cai LIU ◽  
Liang ZHANG ◽  
Yang ZHANG ◽  
...  
Author(s):  
Lucas Ravkov ◽  
Bradley Diak ◽  
Mark Gallerneault ◽  
Peter Clark ◽  
Giuseppe Marzano
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2920
Author(s):  
Qin Peng ◽  
Bin Yang ◽  
Benjamin Milkereit ◽  
Dongmei Liu ◽  
Armin Springer ◽  
...  

Understanding the rapid solidification behavior characteristics, nucleation undercooling, and nucleation mechanism is important for modifying the microstructures and properties of metal alloys. In order to investigate the rapid solidification behavior in-situ, accurate measurements of nucleation undercooling and cooling rate are required in most rapid solidification processes, e.g., in additive manufacturing (AM). In this study, differential fast scanning calorimetry (DFSC) was applied to investigate the nucleation kinetics in a single micro-sized Al-20Si (mass%) particle under a controlled cooling rate of 5000 K/s. The nucleation rates of primary Si and secondary α-Al phases were calculated by a statistical analysis of 300 identical melting/solidification experiments. Applying a model based on the classical nucleation theory (CNT) together with available thermodynamic data, two different heterogeneous nucleation mechanisms of primary Si and secondary α-Al were proposed, i.e., surface heterogeneous nucleation for primary Si and interface heterogenous nucleation for secondary α-Al. The present study introduces a practical method for a detailed investigation of rapid solidification behavior of metal particles to distinguish surface and interface nucleation.


2020 ◽  
Vol 51 (6) ◽  
pp. 2946-2962
Author(s):  
Jyrki Miettinen ◽  
Sami Koskenniska ◽  
Ville-Valtteri Visuri ◽  
Mahesh Somani ◽  
Timo Fabritius ◽  
...  

AbstractIn this study, a set of thermodynamic, kinetic, and microstructure data is presented to simulate the non-equilibrium solidification of Fe-Al-Mn-Si-C alloys. The data were further validated with the experimental measurements and then used in a thermodynamic–kinetic software, IDS, to establish the effect of the alloying and cooling rate on the solidification behavior of high-AlMnSi (Al ≥ 0.5 wt pct, Mn ≥ 2 wt pct, Si ≥ 1 wt pct) steels. The modeling results were additionally validated by conducting electron probe microanalysis (EPMA) measurements. The results reveal that (1) solidification in high-AlMnSi steels occurs at much lower temperatures than in carbon steels; (2) increasing the cooling rate marginally lowers the solidus; (3) the microsegregation of Mn in austenite is much stronger than that of Si and Al due to the tendency of Al and Si to deplete from the liquid phase; (4) the residual delta ferrite content may be influenced by a proper heat treatment but not to the extent that could be expected solely from thermodynamic calculations; (5) in high-AlMnSi steels containing less than 0.2 wt pct carbon, the cracking tendency related to the strengthening above the solidus and the shell growth below the solidus may be much lower than in carbon steels.


2018 ◽  
Vol 135 (4) ◽  
pp. 2237-2246 ◽  
Author(s):  
Yanhong Chen ◽  
Yicheng Feng ◽  
Liping Wang ◽  
Lei Wang ◽  
Guilong Jia ◽  
...  

2008 ◽  
Vol 138 ◽  
pp. 201-208 ◽  
Author(s):  
Jana Dobrovská ◽  
Simona Dočekalová ◽  
Věra Dobrovská ◽  
Karel Stránský

The paper deals with the effect of cooling rate on solidification behavior of IN 738LC nickel based superalloy and on resulting structural and chemical microheterogeneity of this alloy. Samples taken from as-received state were heated with controlled ramp rates (1, 5, 10 and 20 °C min-1). Immediately after melting they were cooled with the same controlled ramp rate with the help of the laboratory experimental system SETARAM SETSYS 18TM TG/DTA/TMA. Then the microanalysis of minority phases was conducted with use of X-ray spectroscopy and microstructure of the individual samples was documented by scanning electron microscopy. Chemical microheterogeneity was determined on the basis of measured concentration data of selected elements (Al, Ti, Cr, Co, Ni, Nb, Mo, Ta and W) in representative areas of the individual samples structure.


2011 ◽  
Vol 228-229 ◽  
pp. 101-105
Author(s):  
Zhi Ming Zhou ◽  
Li Wen Tang ◽  
Jing Luo ◽  
Tao Zhou ◽  
Jie Zhan ◽  
...  

Behavior of Cr-rich phase in rapid solidification Cu71Cr29 alloys was investigated by using melt spinning and splat quenching. The microstructure and solidification behavior of the Cr-rich were investigated by scanning electron microscopy (SEM). The results showed that the alloys generally have a microstructure consisting of a fine dispersion of a Cr-rich phase in a Cu-rich matrix. However, the morphology and size of the Cr-rich phase vary greatly with the cooling rate. On the one hand, the average size of the Cr-rich phase is reduced with increasing cooling rate. On the other hand, the Cr-rich phase show both dendrites and spheroids for lower cooling rate but only spheroids for the higher cooling rate. This means liquid phase separation occurred during rapid solidification. The results were discussed with respect to the formation of the Cr-rich spheroids during rapid solidification.


Author(s):  
Bo Gao ◽  
Yanfei Sui ◽  
Hongwei Wang ◽  
Chunming Zou ◽  
Zunjie Wei ◽  
...  

The microstructure and solidification behavior of nickel based GTD222 superalloy at different cooling rates are studied. The solidification of the GTD222 superalloy proceeds as follows: L→L+γ, L→L+γ+MC, L→L+(γ/γ ′)-Eutectic and L→η phase. The temperature of liquidus of GTD222 superalloy is 1360 °C while the solidus is slightly lower at 1310 °C, which due to the alloying elements redistribution. It was found that the dendrite arm spacing of the alloy decreased with the increase of cooling rate (From 200 μm at 2.5 K/min to 100 μm at 20 K/min).


Author(s):  
Udochukwu Mark

Several factors contribute to the development of structure and properties of aluminiumalloy castings. This study investigated the singular effect of cooling rate on the as-cast structure andmechanical properties of an aluminum-silicon eutectic alloy, keeping other factors such as pouringtemperature, melt treatments, physical and thermal properties of the mould, and alloy compositionconstant. The rate of cooling was varied by employing different casting section sizes, based on thevariation of rate of heat extraction given by solidification time as predicted by the Chvorinov’s rule.Four test bars of section sizes 10, 20, 30, and 40 mm respectively were cast in sand mould using thesame gating system. Spectrometric analysis of the alloy formulated revealed that it could be specifiedapproximately as Al-12.8Si-1.0Cu alloy. The study showed that as section size decreased from 40mm to 10 mm; the solidification time reduced (i.e. the cooling rate increased), the microstructure gotfiner, the silicon flakes became more uniformly distributed, and the mechanical properties generallyimproved. The tensile strength, ductility, and hardness all increased in the order of decreasing sectionsize, i.e. increasing cooling rate. The mechanical properties were found to be linearly correlated withsection size or cooling rate. Whereas the elongations were lower than values for pure aluminium, thestrength and hardness were significantly higher than values for the pure metal. It is concluded thatthe cooling rate modifies the microstructure and improves the mechanical properties of as-cast Al–Sieutectic alloys


2009 ◽  
Vol 47 (8) ◽  
pp. 799-810 ◽  
Author(s):  
Antonio Stocco ◽  
Vincenzo La Carrubba ◽  
Stefano Piccarolo ◽  
Valerio Brucato

Sign in / Sign up

Export Citation Format

Share Document