scholarly journals Effect of Section Size as a Measure of Cooling Rate on the Solidified Microstructure and Mechanical Properties of Sand-Cast Al-Si Eutectic Alloy

Author(s):  
Udochukwu Mark

Several factors contribute to the development of structure and properties of aluminiumalloy castings. This study investigated the singular effect of cooling rate on the as-cast structure andmechanical properties of an aluminum-silicon eutectic alloy, keeping other factors such as pouringtemperature, melt treatments, physical and thermal properties of the mould, and alloy compositionconstant. The rate of cooling was varied by employing different casting section sizes, based on thevariation of rate of heat extraction given by solidification time as predicted by the Chvorinov’s rule.Four test bars of section sizes 10, 20, 30, and 40 mm respectively were cast in sand mould using thesame gating system. Spectrometric analysis of the alloy formulated revealed that it could be specifiedapproximately as Al-12.8Si-1.0Cu alloy. The study showed that as section size decreased from 40mm to 10 mm; the solidification time reduced (i.e. the cooling rate increased), the microstructure gotfiner, the silicon flakes became more uniformly distributed, and the mechanical properties generallyimproved. The tensile strength, ductility, and hardness all increased in the order of decreasing sectionsize, i.e. increasing cooling rate. The mechanical properties were found to be linearly correlated withsection size or cooling rate. Whereas the elongations were lower than values for pure aluminium, thestrength and hardness were significantly higher than values for the pure metal. It is concluded thatthe cooling rate modifies the microstructure and improves the mechanical properties of as-cast Al–Sieutectic alloys

2020 ◽  
pp. 17-20
Author(s):  
N. I. Gabelchenko ◽  
A. A. Belov ◽  
N. A. Kidalov ◽  
A. I. Gabelchenko

The work is devoted to improvement of mechanical properties of iron castings via adjusting of the cooling rate without introduction of alloying additives. The new technological solution is suggested; it can be easily adapted to a casting technology. This solution is based on variation of the cooling rate of iron castings within structurally sensitive solidification intervals. For this purpose, the casting mould was initially cooled after pouring, then heated and cooled again. Cooling of the mould during the period of primary austenite crystal forming led to increase of dendrite crystallization rate and was executed using compressed air. Retarding of the cooling rate during the period of eutectic transformation was provided by the mould heating via burning of exothermic carbon-containing additives introduced in a facing layer of sand-clay moulding mix. Burning reaction is accompanied by heat extraction, what steeply retarded the cooling rate within the interval of eutectic transformation. Consequent acceleration of castings cooling within the interval of eutectoid transformation was achieved via repeated air blowing through a worked reaction layer. Adjusted cooling of iron castings allowed to provide the most favourable solidification conditions, taking into account strictly individual requirements for each structurally sensitive temperature intervals. It led to increase of a volumetric part of primary austenite dendrite crystals, to decrease of eutectic transformation overcooling degree, to forming of graphite eutectics and enlargement of dispersity of pearlite component in iron. Consequently, lowering of widespread iron castings rejects takes place, among them chilling, with simultaneous improvement of metal mechanical properties. As a result, the primary and real structures were varied, what had a positive effect on mechanical properties of casting metal. It is shown that use of solidification rate adjustment led to essential increase of metal tensile strength for the experimental casting.


2014 ◽  
Vol 217-218 ◽  
pp. 45-52
Author(s):  
Hong Xing Lu ◽  
Qiang Zhu ◽  
You Feng He ◽  
Da Quan Li ◽  
Stephen P. Midson

A general rule in conventional liquid metal casting processes is that smaller size would produce better metallurgical quality and mechanical properties. The conclusion that semi-solid thixocasting process doesnt follow this rule has been made recently. The microstructure and mechanical properties of semi-solid thixocastings are much less dependent on casting size and cooling rate than the liquid castings. The step casting in the previous study is specially designed and simplified. The practical castings, e.g. turbocharger impellers, are more complex than the step castings. In this work, the turbocharger impeller is used to study the impact of section size representing the casting size on the microstructure and mechanical properties of semi-solid thixocastings, compared with the step casting. Section thickness decreases from 50 mm to 3.5 mm. In addition, the impact of casting thickness on the eutectic phase is also presented. The results reveal that the size of primary α-Al particles is insensitive to the casting thickness in semi-solid thixocasting. The cooling rate has a notable impact on the size and geometric characteristics of the eutectic silicon particles, but the impact is reduced by the following T61 heat treatment. The association between the casting thickness and casting defects is discussed, in order to further understand the impact of casting size on durability and reliability of real casting components.


Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
Lucas Ravkov ◽  
Bradley Diak ◽  
Mark Gallerneault ◽  
Peter Clark ◽  
Giuseppe Marzano
Keyword(s):  

2019 ◽  
Vol 136 ◽  
pp. 02030
Author(s):  
Chen Dong ◽  
Chen Ming ◽  
Cai Ouyang ◽  
Li Pengkun

The GRC formwork structural column adopts the factory-based vertical prefabrication production process, which can reduce the floor space, reduce the formwork loss, speed up the construction progress, promote the full decoration of the prefabricated building, and improve the efficiency of the assembly construction. major. In order to optimize the production process of prefabricated GRC formwork column, the overall stress system of GRC formwork structure is analyzed in the concrete pouring process, and the thickness of GRC formwork, the number of steel hoops and the GRC mode are considered. The influence of the shell cross-section size on the mechanical properties. The research results can provide reference for the optimization and design of prefabricated GRC formwork column production process.


2008 ◽  
Vol 51 ◽  
pp. 85-92 ◽  
Author(s):  
Juan He ◽  
Jian Min Zeng ◽  
Along Yan

In this investigation, experiments were carried out to study the relationship of solidification parameters and the secondary dendrite arm spacing (SDAS) in A357 alloy casting with various thicknesses under the same solidification condition. The results show that the cooling rate decreases as the thickness of specimens increases, the local solidification time increased, and SDAS increased. The relationships between the SDAS and cooling rate and local solidification time under the condition of furan resin self-hardening sand casting were obtained: SDAS = 20.8 tf 0.3, SDAS = 69.34 v -0.3. The mechanical properties have some linear relations with SDAS of A357 alloy after aging heat treatment. The correlations can be expressed: UTS=410.4-0.8SDAS and El%=7.9-0.05SDAS.


Sign in / Sign up

Export Citation Format

Share Document