Establishment of Optimal Blade Clearance of Stainless Steel Rolling-Cut Shear and Test of Shearing Force Parameters

2012 ◽  
Vol 19 (9) ◽  
pp. 52-61 ◽  
Author(s):  
Li-feng Ma ◽  
Qing-xue Huang ◽  
Zhi-quan Huang ◽  
Zhi-bing Chu ◽  
Ya-qin Tian
Author(s):  
R. Mahapatra ◽  
Rait Jaspal Singh ◽  
Samuel Pappy ◽  
Inder Singh ◽  
Ajay Kumar ◽  
...  

The primary role of rolling oil in cold rolling is to reduce friction at the rubbing interface of the work roll and metal sheet surface. The rolling performance as well as cost effectiveness of rolled products is influenced by quality of the rolling oil. Lubricants are required to function under increasingly stressful operating conditions, so it is a challenge to evaluate the product under simulated conditions to improve the customer confidence in its performance. A steel rolling mill customer had requested us to develop a rolling oil to roll stainless steel in a new 3-stand 18-high rolling mill and demonstrate its performance on an experimental set up. The present paper describes the methodology adopted to assess the suitability of a rolling oil for the particular rolling mill. The screening was carried out with a SRV (Schwingungs Reibungs und Verschleisstest, meaning Vibration, friction and Abrasion) tribometer and EHD (Elasto-hydrodynamic) interferometry based film thickness apparatus to assess the frictional and film forming characteristics of the oil under simulated operating conditions. In addition, simulated tests were carried out on a laboratory 2-Hi Experimental rolling mill to find out the specific roll force (rolling force per unit width of the strip being rolled) required to obtain 55–60% cumulative reduction in three passes as desired by the customer for different grades of stainless steel. Based on results obtained in the laboratory mill simulating industrial test conditions, the product was recommended and was accepted by the customer for use in their rolling mill.


2021 ◽  
pp. 175-184
Author(s):  
Bing Xu ◽  
Yanqing Zhang ◽  
Qingliang Cui ◽  
Shaobo Ye ◽  
Fan Zhao

In view of the lack of seeds contact parameters that can be used as a reference for the design of key mechanical components such as buckwheat planting, harvesting, and processing, this study combines simulation optimization design experiments and physical experiments to calibrate the parameters of simulated discrete element of buckwheat seeds. The non-spherical particle model of buckwheat seeds was established using the automatic filling method, and the simulation accumulating test and physical accumulating test were carried out using the bottomless conical cylinder lifting method; the repose angle of buckwheat seeds was taken as the response value, and the initial parameters were screened for significance based on the Plackett-Burman test; and a second-order regression model of the error value for the repose angle and the significance parameter was established based on the steepest climb test and Box-Behnken test. On this basis, the minimum error value of the repose angle was used as the goal to optimize the significance parameter, the optimal combination of contact parameters was obtained, and parameter validation tests were carried out. The significance screening test showed that the buckwheat-buckwheat static friction coefficient, the buckwheat-stainless steel rolling friction coefficient, and the buckwheat-stainless steel restitution coefficient had significant effects on the repose angle of buckwheat (P<0.05). The optimization test showed that the buckwheat-buckwheat static friction coefficient was 0.510, the buckwheat-stainless steel rolling friction coefficient was 0.053, and the buckwheat-stainless steel restitution coefficient was 0.492. The validation test showed that the repose angle of buckwheat seeds under such parameter was 25.39°, and the error with the repose angle of the physical test was 0.55%, which indicated that the optimal parameter combination was reliable. This study could provide a seed model and simulation contact parameters for the research and development of buckwheat sowing, threshing and hulling machinery.


Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.


Author(s):  
J. A. Korbonski ◽  
L. E. Murr

Comparison of recovery rates in materials deformed by a unidimensional and two dimensional strains at strain rates in excess of 104 sec.−1 was performed on AISI 304 Stainless Steel. A number of unidirectionally strained foil samples were deformed by shock waves at graduated pressure levels as described by Murr and Grace. The two dimensionally strained foil samples were obtained from radially expanded cylinders by a constant shock pressure pulse and graduated strain as described by Foitz, et al.


Author(s):  
R. Gonzalez ◽  
L. Bru

The analysis of stacking fault tetrahedra (SFT) in fatigued metals (1,2) is somewhat complicated, due partly to their relatively low density, but principally to the presence of a very high density of dislocations which hides them. In order to overcome this second difficulty, we have used in this work an austenitic stainless steel that deforms in a planar mode and, as expected, examination of the substructure revealed planar arrays of dislocation dipoles rather than the cellular structures which appear both in single and polycrystals of cyclically deformed copper and silver. This more uniform distribution of dislocations allows a better identification of the SFT.The samples were fatigue deformed at the constant total strain amplitude Δε = 0.025 for 5 cycles at three temperatures: 85, 293 and 773 K. One of the samples was tensile strained with a total deformation of 3.5%.


Author(s):  
Y. L. Chen ◽  
J. R. Bradley

Considerable effort has been directed toward an improved understanding of the production of the strong and stiff ∼ 1-20 μm diameter pyrolytic carbon fibers of the type reported by Koyama and, more recently, by Tibbetts. These macroscopic fibers are produced when pyrolytic carbon filaments (∼ 0.1 μm or less in diameter) are thickened by deposition of carbon during thermal decomposition of hydrocarbon gases. Each such precursor filament normally lengthens in association with an attached catalyst particle. The subject of filamentous carbon formation and much of the work on characterization of the catalyst particles have been reviewed thoroughly by Baker and Harris. However, identification of the catalyst particles remains a problem of continuing interest. The purpose of this work was to characterize the microstructure of the pyrolytic carbon filaments and the catalyst particles formed inside stainless steel and plain carbon steel tubes. For the present study, natural gas (∼; 97 % methane) was passed through type 304 stainless steel and SAE 1020 plain carbon steel tubes at 1240°K.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Sign in / Sign up

Export Citation Format

Share Document