An updated two-dimensional gel electrophoresis technique for the detection of drug-induced changes in protein phosphorylation in intact smooth muscle

1999 ◽  
Vol 42 (1) ◽  
pp. 49-57 ◽  
Author(s):  
James K Hennan ◽  
Jack Diamond
1977 ◽  
Vol 146 (5) ◽  
pp. 1261-1279 ◽  
Author(s):  
P P Jones

Mouse lymphocyte H-2 and Ia glycoproteins have been analyzed with a two-dimensional (2-D) acrylamide gel electrophoresis technique, in which proteins are separated first according to their charge in isoelectrofocusing gels and then according to their size in sodium dodecyl sulfate gels. Individual polypeptide chains from radiolabeled cells are resolved as discrete spots on autoradiograms of the gels, forming patterns which are characteristic of the proteins in the sample. 2-D gels of H-2K, H-2D, and Ia glycoproteins immunoprecipitated from 35S-methionine-labeled cells reveal that these proteins exist in the cells as complex arrays of molecules heterogeneous in both size and charge. Lactoperoxidase-catalyzed radioiodination of lymphocyte surfaces labels only subsets of the total H-2 and Ia molecules with 125I, indicating that some of the molecules may represent cytoplasmic precursors of the cell surface proteins. This theory is supported by the kinetics of labeling of various spots in 35S-methionine pulse-chase experiments. The 2-D gel patterns obtained for both H-2 and Ia antigens have also been shown to be haplotype-specific and independent of the genetic background.


Development ◽  
1986 ◽  
Vol 92 (1) ◽  
pp. 103-113
Author(s):  
Jean Gautier ◽  
Renée Tencer

Patterns of protein phosphorylation and synthesis during axolotl (Ambystoma mexicanum) oocyte maturation were studied by incorporation of [32P]orthophosphate and [35S]methionine into polypeptides, followed by two-dimensional gel electrophoresis. Various alterations were observed after progesterone treatment: de novo appearance of [35S]methionine-labelled polypeptides, a quantitative increase in previously synthesized proteins and a quantitative decrease in or disappearance of other previously synthesized proteins. Changes in 32P- and 35S-labelling were observed very early during maturation. Neither prior oocyte enucleation nor α-amanitin treatment had a significant effect on these changes. Stimulation with MPF provided the same final protein pattern as PG treatment. However, cholera toxin inhibited all the changes seen during maturation. Comparisons between the patterns of [35S]methionine- and [32P]phosphatelabelling provide further information on the biochemical events that take place during oocyte maturation.


Sign in / Sign up

Export Citation Format

Share Document