Testing the allometric scaling relationships with seedlings of two tree species

2003 ◽  
Vol 24 (3) ◽  
pp. 125-129 ◽  
Author(s):  
Xiongwen Chen ◽  
Bai-Lian Li
2000 ◽  
Vol 203 (12) ◽  
pp. 1937-1946 ◽  
Author(s):  
R.S. Wilson ◽  
C.E. Franklin ◽  
R.S. James

We constructed a force platform to investigate the scaling relationships of the detailed dynamics of jumping performance in striped marsh frogs (Limnodynastes peronii). Data were used to test between two alternative models that describe the scaling of anuran jumping performance; Hill's model, which predicts mass- independence of jump distance, and Marsh's model, which predicts that jump distance increases as M(0.2), where M is body mass. From the force platform, scaling relationships were calculated for maximum jumping force (F(max)), acceleration, take-off velocity (U(max)), mass-specific jumping power (P(max)), total jumping distance (D(J)) and total contact time for 75 L. peronii weighing between 2.9 and 38. 4 g. F(max) was positively correlated with body mass and was described by the equation F(max)=0.16M(0.61), while P(max) decreased significantly with body mass and was described by the equation P(max)=347M(−)(0.46). Both D(J) and U(max) were mass-independent over the post-metamorph size range, and thus more closely resembled Hill's model for the scaling of locomotion. We also examined the scaling relationships of jumping performance in metamorph L. peronii by recording the maximum jump distance of 39 animals weighing between 0.19 and 0.58 g. In contrast to the post-metamorphic L. peronii, D(J) and U(max) were highly dependent on body mass in metamorphs and were described by the equations D(J)=38M(0.53) and U(max)=1.82M(0.23), respectively. Neither model for the scaling of anuran jumping performance resembled data from metamorph L. peronii. Although the hindlimbs of post-metamorphic L. peronii scaled geometrically (body mass exponent approximately 0.33), the hindlimbs of metamorphs showed greater proportional increases with body mass (mass exponents of 0.41-0.42).


2017 ◽  
Author(s):  
Justin D. Yeakel ◽  
Christopher P. Kempes ◽  
Sidney Redner

The eco-evolutionary dynamics of species are fundamentally linked to the energetic constraints of its constituent individuals. Of particular importance is the interplay between reproduction and the dynamics of starvation and recovery. To elucidate this interplay, we introduce a nutritional state-structured model that incorporates two classes of consumer: nutritionally replete, reproducing consumers, and undernourished, non-reproducing consumers. We obtain strong constraints on starvation and recovery rates by deriving allometric scaling relationships and find that population dynamics are typically driven to a steady state. Moreover, these rates fall within a ‘refuge’ in parameter space, where the probability of population extinction is minimized. We also show that our model provides a natural framework to predict maximum mammalian body size by determining the relative stability of an otherwise homogeneous population to a competing population with altered percent body fat. This framework provides a principled mechanism for a selective driver of Cope’s rule.


2021 ◽  
Author(s):  
Wilfred Wollheim ◽  
Tamara Harms ◽  
Andrew Robison ◽  
Lauren Koenig ◽  
Ashley Helton ◽  
...  

Abstract River networks are a crucial component of the earth system because they regulate carbon and nutrient exchange between continents, the atmosphere, and oceans. Quantifying the role of river networks at broad spatial scales must accommodate spatial heterogeneity, discharge variability, and upstream-downstream connectivity. Allometric scaling relationships of cumulative biogeochemical function with watershed size integrate these factors, providing an approach for understanding the role of fluvial networks in the earth system. Here we demonstrate that allometric scaling relationships of cumulative river network function are linear (power exponent ~ 1) when biogeochemical reactivity is high and river discharges are low, but become increasingly superlinear (power exponent > 1) as reactivity declines or discharge increases. Superlinear scaling indicates that biogeochemical function of entire river networks within a watershed is an emergent property that increases disproportionately with increasing watershed size. Expanding observation networks will increase precision in riverine fluxes of carbon and nutrients estimated by allometric scaling functions.


2011 ◽  
Vol 366 (1577) ◽  
pp. 2554-2563 ◽  
Author(s):  
Kate E. Jones ◽  
Tim M. Blackburn ◽  
Nick J. B. Isaac

The idea of a unifying theory of biodiversity linking the diverse array of macroecological patterns into a common theoretical framework is very appealing. We explore this idea to examine currently proposed unified theories of biodiversity (UTBs) and their predictions. Synthesizing the literature on the macroecological patterns of mammals, we critically evaluate the evidence to support these theories. We find general qualitative support for the UTBs' predictions within mammals, but rigorous testing is hampered by the types of data typically collected in studies of mammals. In particular, abundance is rarely estimated for entire mammalian communities or of individual species in multiple locations, reflecting the logistical challenges of studying wild mammal populations. By contrast, there are numerous macroecological patterns (especially allometric scaling relationships) that are extremely well characterized for mammals, but which fall outside the scope of current UTBs. We consider how these theories might be extended to explain mammalian biodiversity patterns more generally. Specifically, we suggest that UTBs need to incorporate the dimensions of geographical space, species' traits and time to reconcile theory with pattern.


2010 ◽  
Vol 1 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Andrea S. Les ◽  
Janice J. Yeung ◽  
Geoffrey M. Schultz ◽  
Robert J. Herfkens ◽  
Ronald L. Dalman ◽  
...  

2014 ◽  
Vol 33 (6) ◽  
pp. 482-489 ◽  
Author(s):  
Qiming Cao ◽  
Jimmy Yu ◽  
Des Connell

Allometric scaling between metabolic rate, size, body temperature, and other biological traits has found broad applications in ecology, physiology, and particularly in toxicology and pharmacology. Basal metabolic rate (BMR) was observed to scale with body size and temperature. However, the mass scaling exponent was increasingly debated whether it should be 2/3, 3/4, or neither, and scaling with body temperature also attracted recent attention. Based on thermodynamic principles, this work reports 2 new scaling relationships between BMR, size, temperature, and biological time. Good correlations were found with the new scaling relationships, and no universal scaling exponent can be obtained. The new scaling relationships were successfully validated with external toxicological and pharmacological studies. Results also demonstrated that individual extrapolation models can be built to obtain scaling exponent specific to the interested group, which can be practically applied for dose and toxicity extrapolations.


Sign in / Sign up

Export Citation Format

Share Document