Improved antigen detection on western blots

2001 ◽  
Vol 6 (1) ◽  
pp. 34-36 ◽  
Author(s):  
Hiroshi Matsugu ◽  
Takahito Nishikata
F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 254
Author(s):  
Nathalie Plundrich ◽  
Mary Ann Lila ◽  
Edward Foegeding ◽  
Scott Laster

Antigen detection during Western blotting commonly utilizes a horseradish peroxidase-coupled secondary antibody and enhanced chemiluminescent substrate. We utilized this technique to examine the impact of green tea-derived polyphenols on the binding of egg white protein-specific IgE antibodies from allergic human plasma to their cognate antigens. Our experiments unexpectedly showed that green tea-derived polyphenols, when stably complexed with egg white proteins, caused “ghost” band formation in the presence of horseradish peroxide. This study suggests that caution should be taken when evaluating polyphenol-bound proteins by enhanced chemiluminescence Western blotting using horseradish peroxidase and demonstrates that protein-bound polyphenols can be a source of “ghost” band artifacts on Western blots.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 254 ◽  
Author(s):  
Nathalie Plundrich ◽  
Mary Ann Lila ◽  
Edward Foegeding ◽  
Scott Laster

Antigen detection during Western blotting commonly utilizes a horseradish peroxidase-coupled secondary antibody and enhanced chemiluminescent substrate. We utilized this technique to examine the impact of green tea-derived polyphenols on the binding of egg white protein-specific IgE antibodies from allergic human plasma to their cognate antigens. Our experiments unexpectedly showed that green tea-derived polyphenols, when stably complexed with egg white proteins, caused hyperactivation of horseradish peroxidase resulting in the appearance of white “ghost” bands. This study suggests that caution should be taken when evaluating polyphenol-bound proteins by enhanced chemiluminescence Western blotting using horseradish peroxidase and demonstrates that protein-bound polyphenols can be a source of “ghost” band artifacts on Western blots.


1998 ◽  
Vol 79 (01) ◽  
pp. 177-185 ◽  
Author(s):  
Ashia Siddiqua ◽  
Michael Wilkinson ◽  
Vijay Kakkar ◽  
Yatin Patel ◽  
Salman Rahman ◽  
...  

SummaryWe report the characterization of a monoclonal antibody (MAb) PM6/13 which recognises glycoprotein IIIa (GPIIIa) on platelet membranes and in functional studies inhibits platelet aggregation induced by all agonists examined. In platelet-rich plasma, inhibition of aggregation induced by ADP or low concentrations of collagen was accompanied by inhibition of 5-hydroxytryptamine secretion. EC50 values were 10 and 9 [H9262]g/ml antibody against ADP and collagen induced responses respectively. In washed platelets treated with the cyclooxygenase inhibitor, indomethacin, PM6/13 inhibited platelet aggregation induced by thrombin (0.2 U/ml), collagen (10 [H9262]g/ml) and U46619 (3 [H9262]M) with EC50 = 4, 8 and 4 [H9262]g/ml respectively, without affecting [14C]5-hydroxytryptamine secretion or [3H]arachidonate release in appropriately labelled cells. Studies in Fura 2-labelled platelets revealed that elevation of intracellular calcium by ADP, thrombin or U46619 was unaffected by PM6/13 suggesting that the epitope recognised by the antibody did not influence Ca2+ regulation. In agreement with the results from the platelet aggregation studies, PM6/13 was found to potently inhibit binding of 125I-fibrinogen to ADP activated platelets. Binding of this ligand was also inhibited by two other MAbs tested, namely SZ-21 (also to GPIIIa) and PM6/248 (to the GPIIb-IIIa complex). However when tested against binding of 125I-fibronectin to thrombin stimulated platelets, PM6/13 was ineffective in contrast with SZ-21 and PM6/248, that were both potent inhibitors. This suggested that the epitopes recognised by PM6/13 and SZ-21 on GPIIIa were distinct. Studies employing proteolytic dissection of 125I-labelled GPIIIa by trypsin followed by immunoprecipitation with PM6/13 and analysis by SDS-PAGE, revealed the presence of four fragments at 70, 55, 30 and 28 kDa. PM6/13 did not recognize any protein bands on Western blots performed under reducing conditions. However Western blotting analysis with PM6/13 under non-reducing conditions revealed strong detection of the parent GP IIIa molecule, of trypsin treated samples revealed recognition of an 80 kDa fragment at 1 min, faint recognition of a 60 kDa fragment at 60 min and no recognition of any product at 18 h treatment. Under similar conditions, SZ-21 recognized fragments at 80, 75 and 55 kDa with the 55kDa species persisting even after 18 h trypsin treatment. These studies confirm the epitopes recognised by PM6/13 and SZ-21 to be distinct and that PM6/13 represents a useful tool to differentiate the characteristics of fibrinogen and fibronectin binding to the GPIIb-IIIa complex on activated platelets.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2020 ◽  
Vol 21 (17) ◽  
pp. 6139 ◽  
Author(s):  
Ramkumar Menon ◽  
Morgan R Peltier

Fetal membrane dysfunction in response to oxidative stress (OS) is associated with adverse pregnancy outcomes. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is one of the regulators of innate OS response. This study evaluated changes in Nrf2 expression and its downstream targets heme oxygenase (HO-1) and peroxisome proliferator-activated receptor gamma (PPARγ) in fetal membranes during OS and infection in vitro. Furthermore, we tested the roles of sulforaphane (SFN; an extract from cruciferous vegetables) and trigonelline (TRN; an aromatic compound in coffee) in regulating Nrf2 and its targets. Fetal membranes (n = 6) collected at term were placed in an organ explant system were treated with water-soluble cigarette smoke extract (CSE), an OS inducer (1:10), and lipopolysaccharide (LPS; 100 ng/mL). Nrf2 expression, expression, its enhancement by sulforaphane (SFN, 10 µM/mL) and down regulation by TRN (10uM/mL) was determined by western blots. Expression of Nrf2 response elements PPARγ (western) heme oxygenase (HO-1), and IL-6 were quantified by ELISA. CSE and LPS treatment of fetal membranes increased nrf2, but reduced HO-1 and PPARγ and increased IL-6. Co-treatment of SFN, but not with TRN, with CSE and LPS increased Nrf2 substantially, as well as increased HO-1 and PPARγ and reduced IL-6 expression. Risk factor-induced Nrf2 increase is insufficient to generate an antioxidant response in fetal membranes. Sulforaphane may enhance innate antioxidant and anti-inflammatory capacity by increasing NRF-2 expression.


1986 ◽  
Vol 32 (10) ◽  
pp. 1832-1835 ◽  
Author(s):  
P C Patel ◽  
L Aubin ◽  
J Côte

Abstract We investigated two techniques of immunoblotting--the Western blot and the dot blot--for use in detecting prostatic acid phosphatase (PAP, EC 3.1.3.2). We used polyclonal antisera to human PAP, produced in rabbits by hyperimmunization with purified PAP, and PAP-specific monoclonal antibodies in the immunoenzymatic protocols. We conclude that PAP can be readily detected by Western blots with use of polyclonal antisera, but not with monoclonal antibodies. On the other hand, using a dot blot assay, we could easily detect PAP with both polyclonal and monoclonal antibodies.


2021 ◽  
Vol 22 (2) ◽  
pp. 687
Author(s):  
Tong Zhou ◽  
Bolan Zhou ◽  
Yasong Zhao ◽  
Qing Li ◽  
Guili Song ◽  
...  

Most currently available bioreactors have some defects in the expression, activity, or purification of target protein and peptide molecules, whereas the mucus gland of fish can overcome these defects to become a novel bioreactor for the biopharmaceutical industry. In this study, we have evaluated the practicability of developing a mucus gland bioreactor in loach (Paramisgurnus dabryanus). A transgenic construct pT2-krt8-IFN1 was obtained by subcloning the promoter of zebrafish keratin 8 gene and the type I interferon (IFN1) cDNA of grass carp into the SB transposon. The IFN1 expressed in CIK cells exhibited an antiviral activity against the replication of GCRV873 and activated two genes downstream of JAK-STAT signaling pathway. A transgenic loach line was then generated by microinjection of the pT2-krt8-IFN1 plasmids and in vitro synthesized capped SB11 mRNA. Southern blots indicated that a single copy of IFN1 gene was stably integrated into the genome of transgenic loach. The expression of grass carp IFN1 in transgenic loaches was detected with RT-PCR and Western blots. About 0.0825 µg of grass carp IFN1 was detected in 20 µL mucus from transgenic loaches. At a viral titer of 1 × 103 PFU/mL, plaque numbers on plates containing mucus from transgenic loaches reduced by 18% in comparison with those of the control, indicating that mucus of IFN1-transgenic loaches exhibited an antiviral activity. Thus, we have successfully created a mucus gland bioreactor that has great potential for the production of various proteins and peptides.


Sign in / Sign up

Export Citation Format

Share Document