High-bypass turbofan model using a fan radial-profile performance map

2001 ◽  
Vol 4 (2-3) ◽  
pp. 115-126 ◽  
Author(s):  
B. Curnock ◽  
J. Yin ◽  
R. Hales ◽  
P. Pilidis
2020 ◽  
Vol 635 ◽  
pp. A41
Author(s):  
Jan Florian ◽  
Bodo Ziegler ◽  
Michaela Hirschmann ◽  
Polychronis Papaderos ◽  
Ena Choi ◽  
...  

Context. Powerful active galactic nuclei (AGN) are supposed to play a key regulatory role on the evolution of their host galaxies by shaping the thermodynamic properties of their gas component. However, little is known as to the nature and the visibility timescale of the kinematical imprints of AGN-driven feedback. Gaining theoretical and observational insights into this subject is indispensable for a thorough understanding of the AGN-galaxy coevolution and could yield empirical diagnostics for the identification of galaxies that have experienced a major AGN episode in the past. Aims. We present an investigation of kinematical imprints of AGN feedback on the warm ionized gas medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Hα velocity fields in 123 local ETGs from the CALIFA (Calar Alto Legacy Integral Field Area Survey) integral field spectroscopy survey with 20 simulated galaxies from high-resolution hydrodynamic cosmological SPHgal simulations. The latter were resimulated for two modeling setups, one with and another without AGN feedback. Methods. In order to quantify the effects of AGN feedback on gas kinematics, we measured three parameters that probe deviations from simple regular rotation by using the kinemetry package. These indicators trace the possible presence of distinct kinematic components in Fourier space (k3, 5/k1), variations in the radial profile of the kinematic major axis (σPA), and offsets between the stellar and gas velocity fields (Δϕ). These quantities were monitored in the simulations from a redshift 3 to 0.2 to assess the connection between black hole accretion history, stellar mass growth, and the kinematical perturbation of the WIM. Results. Observed local massive galaxies show a broad range of irregularities, indicating disturbed warm gas motions, which is irrespective of being classified via diagnostic lines as AGN or not. Simulations of massive galaxies with AGN feedback generally exhibit higher irregularity parameters than without AGN feedback, which is more consistent with observations. Besides AGN feedback, other processes like major merger events or infalling gas clouds can lead to elevated irregularity parameters, but they are typically of shorter duration. More specifically, k3, 5/k1 is most sensitive to AGN feedback, whereas Δϕ is most strongly affected by gas infall. Conclusions. We conclude that even if the general disturbance of the WIM velocity is not a unique indicator for AGN feedback, irregularity parameters that are high enough to be consistent with observations can only be reproduced in simulations with AGN feedback. Specifically, an elevated value for the deviation from simple ordered motion is a strong sign for previous events of AGN activity and feedback.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
M. Hoppe ◽  
L. Hesslow ◽  
O. Embreus ◽  
L. Unnerfelt ◽  
G. Papp ◽  
...  

Synchrotron radiation images from runaway electrons (REs) in an ASDEX Upgrade discharge disrupted by argon injection are analysed using the synchrotron diagnostic tool Soft and coupled fluid-kinetic simulations. We show that the evolution of the runaway distribution is well described by an initial hot-tail seed population, which is accelerated to energies between 25–50 MeV during the current quench, together with an avalanche runaway tail which has an exponentially decreasing energy spectrum. We find that, although the avalanche component carries the vast majority of the current, it is the high-energy seed remnant that dominates synchrotron emission. With insights from the fluid-kinetic simulations, an analytic model for the evolution of the runaway seed component is developed and used to reconstruct the radial density profile of the RE beam. The analysis shows that the observed change of the synchrotron pattern from circular to crescent shape is caused by a rapid redistribution of the radial profile of the runaway density.


2021 ◽  
Vol 502 (3) ◽  
pp. 4290-4304
Author(s):  
Enrico Vesperini ◽  
Jongsuk Hong ◽  
Mirek Giersz ◽  
Arkadiusz Hypki

ABSTRACT We have carried out a set of Monte Carlo simulations to study a number of fundamental aspects of the dynamical evolution of multiple stellar populations in globular clusters with different initial masses, fractions of second generation (2G) stars, and structural properties. Our simulations explore and elucidate: (1) the role of early and long-term dynamical processes and stellar escape in the evolution of the fraction of 2G stars and the link between the evolution of the fraction of 2G stars and various dynamical parameters; (2) the link between the fraction of 2G stars inside the cluster and in the population of escaping stars during a cluster’s dynamical evolution; (3) the dynamics of the spatial mixing of the first-generation (1G) and 2G stars and the details of the structural properties of the two populations as they evolve toward mixing; (4) the implications of the initial differences between the spatial distribution of 1G and 2G stars for the evolution of the anisotropy in the velocity distribution and the expected radial profile of the 1G and 2G anisotropy for clusters at different stages of their dynamical history; and (5) the variation of the degree of energy equipartition of the 1G and the 2G populations as a function of the distance from the cluster’s centre and the cluster’s evolutionary phase.


Author(s):  
Amir A. Kharazi ◽  
Pezhman Akbari ◽  
Norbert Mu¨ller

A number of technical challenges have often hindered the economical application of refrigeration cycles using water (R718) as refrigerant. The novel concept of condensing wave rotor provides a solution for performance improvement of R718 refrigeration cycles. The wave rotor implementation can increase efficiency and reduce the size and cost of R718 units. The condensing wave rotor employs pressurized water to pressurize, desuperheat, and condense the refrigerant vapor — all in one dynamic process. In this study, the underlying phenomena of flash evaporation, shock wave compression, desuperheating, and condensation inside the wave rotor channels are described in a wave and phase-change diagram. A computer program based on a thermodynamic model is generated to evaluate the performance of R718 baseline and wave-rotor-enhanced cycles. The detailed thermodynamic approach for the baseline and the modified cycles is described. The effect of some key parameters on the performance enhancement is demonstrated as an aid for optimization. A generated performance map summarizes the findings.


2013 ◽  
Vol 52 (35) ◽  
pp. 8451 ◽  
Author(s):  
Sophie Acheroy ◽  
Patrick Merken ◽  
Heidi Ottevaere ◽  
Thomas Geernaert ◽  
Hugo Thienpont ◽  
...  

2006 ◽  
Vol 63 (9) ◽  
pp. 2169-2193 ◽  
Author(s):  
Jeffrey D. Kepert

Abstract The GPS dropsonde allows observations at unprecedentedly high horizontal and vertical resolution, and of very high accuracy, within the tropical cyclone boundary layer. These data are used to document the boundary layer wind field of the core of Hurricane Georges (1998) when it was close to its maximum intensity. The spatial variability of the boundary layer wind structure is found to agree very well with the theoretical predictions in the works of Kepert and Wang. In particular, the ratio of the near-surface wind speed to that above the boundary layer is found to increase inward toward the radius of maximum winds and to be larger to the left of the track than to the right, while the low-level wind maximum is both more marked and at lower altitude on the left of the storm track than on the right. However, the expected supergradient flow in the upper boundary layer is not found, with the winds being diagnosed as close to gradient balance. The tropical cyclone boundary layer model of Kepert and Wang is used to simulate the boundary layer flow in Hurricane Georges. The simulated wind profiles are in good agreement with the observations, and the asymmetries are well captured. In addition, it is found that the modeled flow in the upper boundary layer at the eyewall is barely supergradient, in contrast to previously studied cases. It is argued that this lack of supergradient flow is a consequence of the particular radial structure in Georges, which had a comparatively slow decrease of wind speed with radius outside the eyewall. This radial profile leads to a relatively weak gradient of inertial stability near the eyewall and a strong gradient at larger radii, and hence the tropical cyclone boundary layer dynamics described by Kepert and Wang can produce only marginally supergradient flow near the radius of maximum winds. The lack of supergradient flow, diagnosed from the observational analysis, is thus attributed to the large-scale structure of this particular storm. A companion paper presents a similar analysis for Hurricane Mitch (1998), with contrasting results.


1975 ◽  
Vol 189 (1) ◽  
pp. 557-565 ◽  
Author(s):  
A. Whitfield ◽  
F. J. Wallace

A procedure to predict the complete performance map of turbocharger centrifugal compressors is presented. This is based on a one-dimensional flow analysis using existing published loss correlations that were available and thermodynamic models to describe the incidence loss and slip factor variation at flow rates which differ from the design point. To predict the losses within the complete compressor stage using a one-dimensional flow procedure, it is necessary to introduce a number of empirical parameters. The uncertainty associated with these empirical parameters is assessed by studying the effect of varying them upon the individual losses and upon the overall predicted performance.


SAGE Open ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 215824401880762 ◽  
Author(s):  
Majid Ghasemy ◽  
Sufean Bin Hussin ◽  
Ahmad Zabidi Bin Abdul Razak ◽  
Mohd Jamil Bin Maah ◽  
Simin Ghavifekr

The study was undertaken to identify the essential leadership capabilities and managerial competencies as the key leadership performance drivers in Malaysian focused universities. To collect data, the previously developed scales of capabilities, competencies, and leadership performance in the context of Malaysian Higher Education (HE) were distributed among the leaders in seven public focused and 12 private focused universities. In total, 172 completed surveys were collected among which 94 had been filled out by the leaders in Malaysian public focused and 78 had been completed by leaders in private focused universities. The data were screened and SmartPLS 3 was employed to analyze the data. Also, Finite Mixture Partial Least Squares (FIMIX-PLS) segmentation and Importance–Performance Map Analysis (IPMA) were run to extend the results. The outcome of FIMIX-PLS didn’t reveal unobserved heterogeneity within the data and, through IPMA, change-oriented capability was identified as the main improvement area to be addressed by management activities. Moreover, the implications of the findings were discussed and future directions were recommended.


Sign in / Sign up

Export Citation Format

Share Document