scholarly journals 320. Tightly Regulated Doxycycline (Dox)-Inducible Lentiviral Vectors for Human Myeloprotective Gene Therapy: In Vitro and CD34+ -Xenotransplant Studies

2013 ◽  
Vol 21 ◽  
pp. S123
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5143-5143
Author(s):  
Liesbeth De Waele ◽  
Kathleen Freson ◽  
Chantal Thys ◽  
Christel Van Geet ◽  
Désiré Collen ◽  
...  

Abstract The prevalence of congenital platelet disorders has not been established but for some life-threatening bleeding disorders the current therapies are not adequate, justifying the development of alternative strategies as gene therapy. In the case of platelet dysfunction and thrombocytopenia as described for GATA1 deficiency, potentially lethal internal bleedings can occur. The objective of the study is to develop improved lentiviral vectors for megakaryocyte(MK)-specific long term gene expression by ex vivo transduction of hematopoietic stem cells (HSC) to ultimately use for congenital thrombopathies as GATA1 deficiency. Self-inactivating lentiviral vectors were constructed expressing GFP driven by the murine (m) or human (h) GPIIb promoter. These promoters contain multiple Ets and GATA binding sites directing MK-specificity. To evaluate the cell lineage-specificity and transgene expression potential of the vectors, murine Sca1+ and human CD34+ HSC were transduced in vitro with Lenti-hGPIIb-GFP and Lenti-mGPIIb-GFP vectors. After transduction the HSC were induced to differentiate in vitro along the MK and non-MK lineages. The mGPIIb and hGPIIb promoters drove GFP expression at overall higher levels (20% in murine cells and 25% in human cells) than the ubiquitous CMV (cytomegalovirus) or PGK (phosphoglycerate kinase) promoters, and this exclusively in the MK lineage. Interestingly, in both human and murine HSC the hGPIIb promoter with an extra RUNX and GATA binding site, was more potent in the MK lineage compared to the mGPIIb promoter. Since FLI1 and GATA1 are the main transcription factors regulating GPIIb expression, we tested the Lenti-hGPIIb-GFP construct in GATA1 deficient HSC and obtained comparable transduction efficiencies as for wild-type HSC. To assess the MK-specificity of the lentiviral vectors in vivo, we transplanted irradiated wild-type C57Bl/6 mice with Sca1+ HSC transduced with the Lenti-hGPIIb-GFP constructs. Six months after transplantation we could detect 6% GFP positive platelets without a GFP signal in other cell lineages. Conclusion: In vitro and in vivo MK-specific transgene expression driven by the hGPIIb and mGPIIb promoters could be obtained after ex vivo genetic engineering of HSC by improved lentiviral vectors. Studies are ongoing to study whether this approach can induce phenotypic correction of GATA1 deficient mice by transplantation of ex vivo Lenti-hGPIIb-GATA1 transduced HSC.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4710-4710 ◽  
Author(s):  
Adrian Schwarzer ◽  
Steven R Talbot ◽  
Oliver Dittrich-Breiholz ◽  
Adrian J Thrasher ◽  
Bobby Gaspar ◽  
...  

Abstract The variety of gene therapy vectors for a multitude of different diseases has increased tremendously over the years. However, a number of patients that underwent gene therapy in different trials developed hematological malignancy caused by integration of the provirus in the vicinity of proto-oncogenes. These severe adverse advents prompted intense research efforts towards safer gene therapy, leading to the removal of the long terminal repeat enhancer elements and the use of internal promoters in retroviral vectors. Still, a bottleneck of transition from basic research to clinical application is the test for safety of integrating retro- and lentiviral vectors. Instead of laborious in vivo models with limited predictive value, in vitro assays to screen for insertional mutagenesis are strongly desirable. A decade ago, our lab developed the in vitro immortalization (IVIM) assay to quantify the genotoxic potential of viral vectors, which has been widely used to complete preclinical safety documentation of newly developed integrating vector systems. Despite general acceptance in the field of hematopoietic gene therapy, bias for insertional mutants of the myeloid lineage, a low sensitivity and a long assay run time are clear limitations. We now developed the molecular surrogate assay for genotoxicity assessment (SAGA). The new test is more robust, sensitive and biologically informative. As input we used murine lineage-negative hematopoietic stem and progenitor cells (HSPC) that were cultured as described for the IVIM assay. The murine HSPC were transduced with a number of different gammaretro- and lentiviral vectors, including vectors that have been employed in clinical trials for X-SCID and Wiskott-Aldrich Syndrome. After 14 days, whole mRNA was isolated from transduced and non-transduced samples and analyzed by Agilent custom microarrays (n=86) and qPCR from nine independent SAGA assays. We applied several Machine Learning algorithms to derive a core set of genes which distinguishes transformed from non-transformed samples in each individual SAGA assay. This set of genes from the individual analysis was further analyzed to derive a core set of genes that is able to robustly separate transformed from non-transformed samples in all assays performed. In order to account for platform-specific effects we validated all microarray results by conventional qPCR-methodology. The SAGA gene set was then cross-validated in an independent validation cohort of SAGA-assays that were not part of the SAGA-training set from which the signature was derived from. The SAGA assay was used to quantify the mutagenic potential of several benchmark vectors. It correctly assigned a high mutagenic potential to vectors (MFG.yc and CMMP.WASP) which led to serious adverse events (SAEs) in clinical trials. Most importantly, the SAGA assay reliably scored high for mutagenic vectors, even when the vector did not transform in IVIM-assays conducted in parallel, demonstrating the higher sensitivity of the SAGA-principle. In contrast, SIN lentiviral vectors with weaker internal promoters (LV.EFS.yc and LV.EFS.ADA) showed no enrichment of the SAGA-core signature and hence scored much safer in the SAGA test. We present the results for these vectors side-by-side either using IVIM or SAGA. In summary, we generated an advanced version of the currently used in vitro insertional mutagenesis screening system by integrating a molecular read-out which enhances reproducibility, sensitivity and reduces assay duration, paving the way for a better preclinical risk assessment of gene therapy vectors. Disclosures No relevant conflicts of interest to declare.


2002 ◽  
Vol 269 (11) ◽  
pp. 2764-2771 ◽  
Author(s):  
Paola Di Natale ◽  
Carmela Di Domenico ◽  
Guglielmo R. D. Villani ◽  
Angelo Lombardo ◽  
Antonia Follenzi ◽  
...  

2008 ◽  
Vol 149 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Zsuzsanna Rácz ◽  
Péter Hamar

A genetikában új korszak kezdődött 17 éve, amikor a petúniában felfedezték a koszuppressziót. Később a koszuppressziót azonosították a növényekben és alacsonyabb rendű eukariótákban megfigyelt RNS-interferenciával (RNSi). Bár a növényekben ez ősi vírusellenes gazdaszervezeti védekezőmechanizmus, emlősökben az RNSi élettani szerepe még nincs teljesen tisztázva. Az RNSi-t rövid kettős szálú interferáló RNS-ek (short interfering RNA, siRNS) irányítják. A jelen cikkben összefoglaljuk az RNSi történetét és mechanizmusát, az siRNS-ek szerkezete és hatékonysága közötti összefüggéseket, a célsejtbe való bejuttatás virális és nem virális módjait. Az siRNS-ek klinikai alkalmazásának legfontosabb akadálya az in vivo alkalmazás. Bár a hidrodinamikus kezelés állatokban hatékony, embereknél nem alkalmazható. Lehetőséget jelent viszont a szervspecifikus katéterezés. A szintetizált siRNS-ek ismert mellékhatásait szintén tárgyaljuk. Bár a génterápia ezen új területén számos problémával kell szembenézni, a sikeres in vitro és in vivo kísérletek reményt jelentenek emberi betegségek siRNS-sel történő kezelésére.


2020 ◽  
Vol 20 (11) ◽  
pp. 821-830
Author(s):  
Prasad Pofali ◽  
Adrita Mondal ◽  
Vaishali Londhe

Background: Current gene therapy vectors such as viral, non-viral, and bacterial vectors, which are used for cancer treatment, but there are certain safety concerns and stability issues of these conventional vectors. Exosomes are the vesicles of size 40-100 nm secreted from multivesicular bodies into the extracellular environment by most of the cell types in-vivo and in-vitro. As a natural nanocarrier, exosomes are immunologically inert, biocompatible, and can cross biological barriers like the blood-brain barrier, intestinal barrier, and placental barrier. Objective: This review focusses on the role of exosome as a carrier to efficiently deliver a gene for cancer treatment and diagnosis. The methods for loading of nucleic acids onto the exosomes, advantages of exosomes as a smart intercellular shuttle for gene delivery and therapeutic applications as a gene delivery vector for siRNA, miRNA and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and also the limitations of exosomes as a gene carrier are all reviewed in this article. Methods: Mostly, electroporation and chemical transfection are used to prepare gene loaded exosomes. Results: Exosome-mediated delivery is highly promising and advantageous in comparison to the current delivery methods for systemic gene therapy. Targeted exosomes, loaded with therapeutic nucleic acids, can efficiently promote the reduction of tumor proliferation without any adverse effects. Conclusion: In the near future, exosomes can become an efficient gene carrier for delivery and a biomarker for the diagnosis and treatment of cancer.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


Author(s):  
Aida Nourbakhsh ◽  
Brett M. Colbert ◽  
Eric Nisenbaum ◽  
Aziz El-Amraoui ◽  
Derek M. Dykxhoorn ◽  
...  

AbstractProgressive non-syndromic sensorineural hearing loss (PNSHL) is the most common cause of sensory impairment, affecting more than a third of individuals over the age of 65. PNSHL includes noise-induced hearing loss (NIHL) and inherited forms of deafness, among which is delayed-onset autosomal dominant hearing loss (AD PNSHL). PNSHL is a prime candidate for genetic therapies due to the fact that PNSHL has been studied extensively, and there is a potentially wide window between identification of the disorder and the onset of hearing loss. Several gene therapy strategies exist that show potential for targeting PNSHL, including viral and non-viral approaches, and gene editing versus gene-modulating approaches. To fully explore the potential of these therapy strategies, a faithful in vitro model of the human inner ear is needed. Such models may come from induced pluripotent stem cells (iPSCs). The development of new treatment modalities by combining iPSC modeling with novel and innovative gene therapy approaches will pave the way for future applications leading to improved quality of life for many affected individuals and their families.


Sign in / Sign up

Export Citation Format

Share Document