Abstract #201: A High-Fat Diet in Obese Patients Induces Weight Loss, Leads to Improved Insulin Resistance, and Lowers Systolic Blood Pressure Despite Marked Increase in Dietary Sodium Intake

2006 ◽  
Vol 12 ◽  
pp. 50
Author(s):  
Mustapha Abdul-Rahman ◽  
Marisha Newton ◽  
Angela DiSabatino ◽  
K. M. Mohamed Shakir ◽  
James H. Hays
1997 ◽  
Vol 272 (1) ◽  
pp. E147-E154 ◽  
Author(s):  
A. P. Rocchini ◽  
P. Marker ◽  
T. Cervenka

The current study evaluated both the time course of insulin resistance associated with feeding dogs a high-fat diet and the relationship between the development of insulin resistance and the increase in blood pressure that also occurs. Twelve adult mongrel dogs were chronically instrumented and randomly assigned to either a control diet group (n = 4) or a high-fat diet group (n = 8). Insulin resistance was assessed by a weekly, single-dose (2 mU.kg-1.min-1) euglycemic-hyperinsulinemic clamp on all dogs. Feeding dogs a high-fat diet was associated with a 3.7 +/- 0.5 kg increase in body weight, a 20 +/- 4 mmHg increase in mean blood pressure, a reduction in insulin-mediated glucose uptake [(in mumol-kg-1.min-1) decreasing from 72 +/- 6 before to 49 +/- 7 at 1 wk, 29 +/- 3 at 3 wk, and 30 +/- 2 at 6 wk of the high-fat diet, P < 0.01]. and a reduced insulin-mediated increase in cardiac output. In eight dogs (4 high fat and 4 control), the dose-response relationship of insulin-induced glucose uptake also was studied. The whole body glucose uptake dose-response curve was shifted to the right, and the rate of maximal whole body glucose uptake was significantly decreased (P < 0.001). Finally, we observed a direct relationship between the high-fat diet-induced weekly increase in mean arterial pressure and the degree to which insulin resistance developed. In summary, the current study documents that feeding dogs a high-fat diet causes the rapid development of insulin resistance that is the result of both a reduced sensitivity and a reduced responsiveness to insulin.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Jennifer Cooper ◽  
Linda Fried ◽  
Ping Tepper ◽  
Emma Barinas-Mitchell ◽  
Kim Sutton-Tyrrell

Background: Elevated aldosterone promotes inflammation, insulin resistance, and hypertension. These effects are particularly important in obesity because adipocytes secrete factors that increase aldosterone production. Weight loss is thought to lower aldosterone levels, but little longitudinal data is available. We aimed to determine if, independent of changes in sodium intake, reductions in circulating aldosterone are associated with weight loss and improvements in inflammation, adipokines, insulin resistance, and blood pressure in normotensive overweight and obese young adults undergoing lifestyle modification. Methods: Participants were overweight/obese adults aged 20–45 years (20% male, 15% black) from the Slow Adverse Vascular Effects of excess weight trial, a study evaluating the relationships between weight loss, dietary sodium, and vascular health. Subjects were randomly assigned to a regular or reduced sodium diet, and all received a one-year nutrition and physical activity intervention. For this study, individuals providing valid baseline 24hr urine collections were included (n=281). Linear mixed models were used to evaluate associations between changes in aldosterone and changes in weight, blood pressure, and obesity-related factors. Results: Weight loss was significant at 6 months (∼7%), 12 months (∼6%), and 24 months (∼4%) (p<0.0001 for all). Within-subject decreases in aldosterone were associated with decreases in C-reactive protein, leptin, and homeostasis assessment of insulin resistance (HOMA-IR) and with increases in adiponectin (p<0.01 for all) in models including baseline age, sex, race, intervention arm, time since baseline, and baseline and concurrent changes in BMI, urinary sodium and potassium, and the obesity-related factor of interest. Decreases in aldosterone were associated with weight loss only in the subgroup (n=98) with metabolic syndrome (MetS) at baseline (MetS x percent weight loss p=0.02); a 10% weight reduction in this subgroup was associated with a 9% (95% CI 1–16) reduction in aldosterone. Though no association was detected between changes in aldosterone and mean arterial pressure (MAP), a significant association was found between reductions in MAP and 24hr urinary sodium in those with MetS (MetS x urinary sodium reduction p=0.02). Independent of weight loss, a 30% reduction in urinary sodium was associated with a 0.9 mm Hg (95% CI 0.2–1.6) decrease in MAP in those with MetS. Conclusions: Changes in aldosterone are associated with changes in obesity-related factors in overweight/obese normotensive young adults. In persons with MetS, weight loss and dietary sodium restriction are particularly useful to reduce aldosterone and MAP respectively. Given the adverse effects of excess aldosterone on cardiac and vascular remodeling, future studies should investigate the benefits of aldosterone antagonists in individuals with MetS.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Amy C Burke ◽  
Brian G Sutherland ◽  
Julia M Assini ◽  
Murray W Huff

Previous studies demonstrate that the addition of naringenin, a grapefruit flavonoid, to a high-fat diet prevents the development of many disorders of the metabolic syndrome and atherosclerosis in Ldlr-/- mice. Furthermore, in intervention studies, the addition of naringenin to a high-fat, high cholesterol (HFHC) diet reversed pre-established obesity, hyperlipidemia, hepatic steatosis, insulin resistance and improved atherosclerotic lesion pathology, but not lesion size. In the present intervention study, we tested the hypothesis that addition of naringenin to a chow diet would further improve pre-established metabolic dysregulation and attenuate lesion development, compared to chow alone. Ldlr-/- mice were fed a HFHC diet for 12 weeks to induce metabolic dysregulation. Subsequently, mice received one of 3 diets for another 12 weeks: 1) continuation of the HFHC diet, 2) an isoflavone-free chow diet or 3) isoflavone-free chow with 3% naringenin. At 12 weeks, the HFHC diet induced significant weight gain and increased adiposity. Intervention with chow alone reduced the weight gained during induction by 22%, whereas the addition of naringenin to chow induced a weight loss of 71%. Specifically, the reduction in adiposity was 2.75-times greater in naringenin-treated mice, compared to chow alone. The HFHC diet increased VLDL cholesterol 20-fold and LDL cholesterol 5-fold, which were reduced by intervention with both chow (>60%) and chow supplemented with naringenin (>80%). The HFHC diet induced insulin resistance and glucose intolerance. Naringenin improved insulin tolerance (plasma glucose AUC -38%) and glucose tolerance (plasma glucose AUC -58%), which was accompanied by normalization of plasma insulin and glucose. HFHC-induction promoted the development of intermediate atherosclerotic lesions. Continuation of the HFHC diet doubled lesion size. Intervention with chow alone attenuated lesion size progression by 65%. The addition of naringenin to chow slowed lesion progression by 90%, resulting in smaller lesions compared to chow intervention alone (P=0.042). We conclude that intervention with naringenin-supplemented chow enhances weight loss, improves metabolic dysregulation and halts the progression of atherosclerosis.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Varunkumar G Pandey ◽  
Lars Bellner ◽  
Victor Garcia ◽  
Joseph Schragenheim ◽  
Andrew Cohen ◽  
...  

20-HETE (20-Hydroxyeicosatetraenoic acid) is a cytochrome P450 ω-hydroxylase metabolite of arachidonic acid that promotes endothelial dysfunction, microvascular remodeling and hypertension. Previous studies have shown that urinary 20-HETE levels correlate with BMI and plasma insulin levels. However, there is no direct evidence for the role of 20-HETE in the regulation of glucose metabolism, obesity and type 2 diabetes mellitus. In this study we examined the effect of 20-SOLA (2,5,8,11,14,17-hexaoxanonadecan-19-yl-20-hydroxyeicosa-6(Z),15(Z)-dienoate), a water-soluble 20-HETE antagonist, on blood pressure, weight gain and blood glucose in Cyp4a14 knockout (Cyp4a14-/-) mice fed high-fat diet (HFD). The Cyp4a14-/- male mice exhibit high vascular 20-HETE levels and display 20-HETE-dependent hypertension. There was no difference in weight gain and fasting blood glucose between Cyp4a14-/- and wild type (WT) on regular chow. When subjected to HFD for 15 weeks, a significant increase in weight was observed in Cyp4a14-/- as compared to WT mice (56.5±3.45 vs. 30.2±0.7g, p<0.05). Administration of 20-SOLA (10mg/kg/day in drinking water) significantly attenuated the weight gain (28.7±1.47g, p<0.05) and normalized blood pressure in Cyp4a14-/- mice on HFD (116±0.3 vs. 172.7±4.6mmHg, p<0.05). HFD fed Cyp4a14-/- mice exhibited hyperglycemia as opposed to normal glucose levels in WT on a HFD (154±1.9 vs. 96.3±3.0 mg/dL, p<0.05). 20-SOLA prevented the HFD-induced hyperglycemia in Cyp4a14-/- mice (91±8mg/dL, p<0.05). Plasma insulin levels were markedly high in Cyp4a14-/- mice vs. WT on HFD (2.66±0.7 vs. 0.58±0.18ng/mL, p<0.05); corrected by the treatment with 20-SOLA (0.69±0.09 ng/mL, p<0.05). Importantly, glucose and insulin tolerance tests showed impaired glucose homeostasis and insulin resistance in Cyp4a14-/- mice on HFD; ameliorated by treatment with 20-SOLA. This novel finding that blockade of 20-HETE actions by 20-SOLA prevents HFD-induced obesity and restores glucose homeostasis in Cyp4a14-/- mice suggests that 20-HETE contributes to obesity, hyperglycemia and insulin resistance in HFD induced metabolic disorder. The molecular mechanisms underlying 20-HETE mediated metabolic dysfunction are being currently explored.


2020 ◽  
Vol 245 (11) ◽  
pp. 977-982
Author(s):  
You Kyoung Shin ◽  
Yu Shan Hsieh ◽  
A Young Han ◽  
Soonho Kwon ◽  
Geun Hee Seol

Excessive dietary fat intake is related to metabolic dysfunction and enhances susceptibility to hypertension and cognitive impairment. Although there are sex differences in the prevalence and progression of these diseases, few studies have investigated sex differences in cardio-metabolic and cognitive parameters in rats with high-fat diet-induced metabolic dysfunction. To better reflect actual clinical conditions, sex-differences in rats with high-fat diet-induced metabolic dysfunction were evaluated. Male and female Sprague-Dawley rats were fed a high-fat diet to induce metabolic dysfunction and intraperitoneally injected with N-nitro-L-arginine methyl ester and scopolamine to model vulnerability to hypertension and cognitive impairment, respectively, whereas control rats were fed a regular diet and treated with distilled water and 0.9% saline. Male experimental rats showed significantly higher systolic blood pressure than female experimental animals. More importantly, acetylcholine-induced relaxation of carotid arteries was decreased only in the male experimental rats, revealing a significant difference compared with female experimental rats. These findings provide evidence for individualized sex-based management of patients with metabolic dysfunction and susceptibilities to hypertension and cognitive impairment. Impact statement Excessive dietary fat intake plays important roles in the process of metabolic dysfunction and increases susceptibilities to chronic diseases such as hypertension. Few previous studies, however, have accurately reflected real-world medical conditions. In addition, studies performed to date have not examined detailed sex-differences in cardio-metabolic and cognitive parameters, precluding the development of sex-tailored interventions for patients with metabolic dysfunction who are susceptible to hypertension and cognitive impairment. In this study, using rats with HFD-induced metabolic dysfunction that made them susceptible to hypertension and cognitive impairment, we demonstrate that male rats show greater impairment of acetylcholine-induced vasorelaxation of the carotid artery and systolic blood pressure compared to female rats. These findings may provide a basis for the early detection of carotid artery dysfunction and systolic blood pressure increase, especially in males.


2020 ◽  
Vol 30 (2) ◽  
pp. 339-346 ◽  
Author(s):  
Fengxia Li ◽  
Karen Liu ◽  
Clint Gray ◽  
Paul Harris ◽  
Clare M. Reynolds ◽  
...  

2020 ◽  
Vol 21 (10) ◽  
pp. 3428 ◽  
Author(s):  
Mei-Hsin Hsu ◽  
Jiunn-Ming Sheen ◽  
I-Chun Lin ◽  
Hong-Ren Yu ◽  
Mao-Meng Tiao ◽  
...  

To examine the effects of maternal resveratrol in rats borne to dams with gestational high-fat diet (HFD)/obesity with or without postnatal high-fat diet. We first tested the effects of maternal resveratrol intake on placenta and male fetus brain in rats borne to dams with gestational HFD/obesity. Then, we assessed the possible priming effect of a subsequent insult, male offspring were weaned onto either a rat chow or a HFD. Spatial learning and memory were assessed by Morris water maze test. Blood pressure and peripheral insulin resistance were examined. Maternal HFD/obesity decreased adiponectin, phosphorylation alpha serine/threonine-protein kinase (pAKT), sirtuin 1 (SIRT1), and brain-derived neurotrophic factor (BDNF) in rat placenta, male fetal brain, and adult male offspring dorsal hippocampus. Maternal resveratrol treatment restored adiponectin, pAKT, and BDNF in fetal brain. It also reduced body weight, peripheral insulin resistance, increased blood pressure, and alleviated cognitive impairment in adult male offspring with combined maternal HFD and postnatal HFD. Maternal resveratrol treatment restored hippocampal pAKT and BDNF in rats with combined maternal HFD and postnatal HFD in adult male offspring dorsal hippocampus. Maternal resveratrol intake protects the fetal brain in the context of maternal HFD/obesity. It effectively reduced the synergistic effects of maternal HFD/obesity and postnatal HFD on metabolic disturbances and cognitive impairment in adult male offspring. Our data suggest that maternal resveratrol intake may serve as an effective therapeutic strategy in the context of maternal HFD/obesity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chao-Jie He ◽  
Ye-Ping Fei ◽  
Chun-Yan Zhu ◽  
Ming Yao ◽  
Gang Qian ◽  
...  

Background and Aims: Weight-loss diets reduce body weight and improve blood pressure control in hypertensive patients. Intermittent energy restriction (IER) is an alternative to continuous energy restriction (CER) for weight reduction. We aimed to compare the effects of IER with those of CER on blood pressure control and weight loss in overweight and obese patients with hypertension during a 6-month period.Methods: Two hundred and five overweight or obese participants (BMI 28.7 kg/m2) with hypertension were randomized to IER (5:2 diet, a very-low-calorie diet for 2 days per week, 500 kcal/day for women and 600 kcal/day for men, along with 5 days of a habitual diet) compared to a moderate CER diet (1,000 kcal/day for women and 1,200 kcal/day for men) for 6 months. The primary outcomes of this study were changes in blood pressure and weight, and the secondary outcomes were changes in body composition, glycosylated hemoglobin A1c (HbA1c), and blood lipids.Results: Of the 205 randomized participants (118 women and 87 men; mean [SD] age, 50.2 [8.9] years; mean [SD] body mass index, 28.7 [2.6]; mean [SD] systolic blood pressure, 143 [10] mmHg; and mean [SD] diastolic blood pressure, 91 [9] mmHg), 173 completed the study. The intention-to-treat analysis demonstrated that IER and CER are equally effective for weight loss and blood pressure control: the mean (SEM) weight change with IER was −7.0 [0.6] kg vs. −6.8 [0.6] kg with CER, the mean (SEM) systolic blood pressure with IER was −7 [0.7] mmHg vs. −7 [0.6] mmHg with CER, and the mean (SEM) diastolic blood pressure with IER was −6 [0.5] mmHg vs. −5 [0.5] mmHg with CER, (diet by time P = 0.62, 0.39, and 0.41, respectively). There were favorable improvements in body composition, HbA1c, and blood lipid levels, with no differences between groups. Effects did not differ according to completer analysis. No severe hypoglycemia occurred in either group during the trial.Conclusions: Intermittent energy restriction is an effective alternative diet strategy for weight loss and blood pressure control and is comparable to CER in overweight and obese patients with hypertension.Clinical Trial Registration:http://www.chictr.org.cn, identifier: ChiCTR2000040468.


Sign in / Sign up

Export Citation Format

Share Document